DOI QR코드

DOI QR Code

동해 남서부 해역의 대륙사면에서 Thorpe 규모(scale)를 이용한 연직 난류 확산계수 추정

Thorpe Scale Analysis using CTD Observations on the Continental Slope of the Southwestern East Sea

  • 서성봉 (한국해양과학기술원 물리연구본부) ;
  • 박영규 (한국해양과학기술원 물리연구본부) ;
  • 박재훈 (한국해양과학기술원 물리연구본부) ;
  • 정희동 (국립수산과학원 동해수산연구소 자원환경과)
  • 투고 : 2014.12.29
  • 심사 : 2015.06.18
  • 발행 : 2015.06.30

초록

Thorpe scale analysis was performed using two sets of 25-hour-long hourly CTD data. Raw density profiles collected on the continental slope of the southwestern East Sea were post-processed to reduce instrument noises and measurement errors. Density inversions were detected by applying the overturn ratio test proposed by Gargett and Garner (2008). The value of $K_z$ below the main thermocline estimated with the Osborn parameterization was $5.3{\times}10^{-4}(1.1{\times}10^{-4})m^2s^{-1}$ and that with the Shih parameterization was $5.9{\times}10^{-5}(2.4{\times}10^{-5})m^2s^{-1}$during the spring (neap) tidal period. This result suggests that internal tides can enhance vertical mixing in the observation region.

키워드

참고문헌

  1. 최아라, 박영규, 민홍식, 김경홍 (2009) 후처리과정을 통한 CTD 관측 자료 품질 개선에 대하여. Ocean Polar Res 31(4):339-347(Choi A-R, Park Y-G, Min HS, Kim K-H (2009) The Improvement of CTD Data through Post Processing. Ocean Polar Res 31(4):339-347) https://doi.org/10.4217/OPR.2009.31.4.339
  2. Alford M, Pinkel R (2000) Observations of overturning in the thermocline: the context of ocean mixing. J Phys Oceanogr 30:805-832 https://doi.org/10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2
  3. Dilon TM (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Phys Oceanogr 87:9601-9613
  4. Galbraith PS, Kelley DE (1996) Identifying overturns in CTD profiles. J Atmos Oceanic Technol 13:688-702 https://doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2
  5. Gregg MC (1987) Diapycnal mixing in a thermocline: a review. J Geophys Res 92:5249-5286 https://doi.org/10.1029/JC092iC05p05249
  6. Gregg MC (1989) Scaling turbulent dissipation in the thermocline, J Geophys Res 94:9686-9698 https://doi.org/10.1029/JC094iC07p09686
  7. Johnson HL, Garret C (2004) Effects of noise on Thorpe scales and run lengths. J Phys Oceanogr 34(11):2359-2372 https://doi.org/10.1175/JPO2641.1
  8. Kioroglou S, Tragou E, Zervakis V (2013) Assessing shelf mixing using CTD, ADCP, and free falling shear probe turbulence data. Cont Shelf Res 69:73-87 https://doi.org/10.1016/j.csr.2013.09.014
  9. Kitade Y, Yoshida J, Matsuyama M (2003) Distribution of overturn induced by internal tides and Thorpe scale in Uchiura Bay. J Oceanogr 59:845-850 https://doi.org/10.1023/B:JOCE.0000009575.29339.35
  10. Lueck RG, Wolk F, Yamazaki H (2002) Oceanic velocity microstructure measurements in the 20th century. J Phys Oceanogr 58(1):153-174 https://doi.org/10.1023/A:1015837020019
  11. Matsuno T, Wolk F (2005) Observations of turbulent energy dissipation rate $\varepsilon$ in the Japan Sea. Deep-Sea Res Pt II 52:1564-1579 https://doi.org/10.1016/j.dsr2.2004.06.037
  12. Morison J, Anderson R, Larson N, D'Asaro E, Boyd T (1994) The correction for thermal-lag effect in sea-bird CTD data. J Atmos Ocean Technol 11:1151-1164 https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2
  13. Munk WH (1966) Abyssal receipts. Deep-Sea Res 13(4): 707-730
  14. Ozmidov RV (1965) On the turbulent exchange in a stably stratified ocean. Izv Acad Sci USSR, Atmos Oceanic Phys 1:861-871
  15. Park YH, Fuda JL, Durand I, Naveira Garabato AC (2008) Internal tides and vertical mixing over the Kerguelen Plateau. Deep-Sea Res Pt II 55:582-593 https://doi.org/10.1016/j.dsr2.2007.12.027
  16. Park YH, Lee JH, Durand I, Hong CS (2014) Validation of the Thorpe scale-derived vertical diffusivities against microstructure measurements in the Kerguelen region. Biogeosciences 11:6927-6937 https://doi.org/10.5194/bg-11-6927-2014
  17. Peters H, Gregg MC, Sanford TB (1995) On the parameterization of equatorial turbulence: effect of finescale variations below the range of the diurnal cycle. J Geophys Res 100(C9):18333-18348 https://doi.org/10.1029/95JC01513
  18. Polzin K, Toole JM, Ledwell JR, Schmitt R (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93-96 https://doi.org/10.1126/science.276.5309.93
  19. Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J Fluid Mech 525:193-214 https://doi.org/10.1017/S0022112004002587
  20. Stansfield KC, Garrett C, Dewey R (2001) The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. J Phys Oceanogr 31:3421-3434 https://doi.org/10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2
  21. Thorpe SA (1977) Turbulence and mixing in a Scottish Loch. Philos T Roy Soc A, 286:125-181 https://doi.org/10.1098/rsta.1977.0112
  22. Timmermans ML, Garrett C, Carmack E (2003) The thermohaline structure and evolution of the deep waters in the Canada Basin, Arctic Ocean. Deep-Sea Res Pt I 50(10-11):1305-1321 https://doi.org/10.1016/S0967-0637(03)00125-0
  23. Yagi M, Yasuda I (2013) A modified method for estimating vertical profiles of turbulent dissipation rate using density inversions in the Kuril Straits. J Oceanogr 69:203-214 https://doi.org/10.1007/s10872-012-0165-1