Neuroglial Cell and Alzheimer's Disease

신경아교세포와 알츠하이머 병

  • Kim, Jeong Lan (Department of Psychiatry, School of Medicine, Chungnam National University)
  • 김정란 (충남대학교 의학전문대학원 정신과학교실)
  • Received : 2015.04.20
  • Accepted : 2015.05.15
  • Published : 2015.05.31

Abstract

Neuroglial cells are fundamental for brain homeostasis and defense to intrinsic or extrinsic changes. Loss of their function and over-reactivity to stimuli contribute to the aging of brain. Alzheimer's disease (AD) could be caused by more dramatic response in neuroglia associated with various chemokines and cytokines. Neuroglia of the AD brain shares some phenotypes with aging neuroglia. In addition, neuroglial activation and neuroinflammation are commonly showed in neurodegeneration. Thus neuroglia would be a promising target for therapeutics of AD.

Keywords

References

  1. Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009;32: 421-431. https://doi.org/10.1016/j.tins.2009.05.001
  2. Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004;22:73-86. https://doi.org/10.1016/j.ijdevneu.2003.12.008
  3. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9:260-267. https://doi.org/10.1038/nn1623
  4. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003;6:43-50. https://doi.org/10.1038/nn980
  5. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 2007;13: 54-63. https://doi.org/10.1016/j.molmed.2006.12.005
  6. Fetler L, Amigorena S. Neuroscience. Brain under surveillance: the microglia patrol. Science 2005;309:392-393. https://doi.org/10.1126/science.1114852
  7. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, et al. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 2008;28:468-481. https://doi.org/10.1038/sj.jcbfm.9600546
  8. Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci 2009;10:235-241. https://doi.org/10.1038/nrn2591
  9. Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A. Astrocytes in physiological aging and Alzheimer's disease. Neuroscience 2015 Jan 14 [Epub]. http://dx.doi.org/10.1016/j.neuroscience.2015.01.007.
  10. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009;32:638-647. https://doi.org/10.1016/j.tins.2009.08.002
  11. Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014;565:30-38. https://doi.org/10.1016/j.neulet.2013.12.071
  12. Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013;14:1225-1236. https://doi.org/10.2174/13894501113149990156
  13. Verkhratsky A, Rodriguez JJ, Steardo L. Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 2014;20: 576-588. https://doi.org/10.1177/1073858413510208
  14. Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 2008;15:1691-1700. https://doi.org/10.1038/cdd.2008.99
  15. Hazell AS. Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy. Neurochem Int 2009;55:129-135. https://doi.org/10.1016/j.neuint.2009.02.020
  16. Fabricius K, Jacobsen JS, Pakkenberg B. Effect of age on neocortical brain cells in 90+ year old human females--a cell counting study. Neurobiol Aging 2013;34:91-99. https://doi.org/10.1016/j.neurobiolaging.2012.06.009
  17. Lynch AM, Murphy KJ, Deighan BF, O'Reilly JA, Gun'ko YK, Cowley TR, et al. The impact of glial activation in the aging brain. Aging Dis 2010;1:262-278.
  18. Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 2007;65(12 Pt 2):S173-S176.
  19. Diniz DG, Foro CA, Rego CM, Gloria DA, de Oliveira FR, Paes JM, et al. Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur J Neurosci 2010;32:509-519. https://doi.org/10.1111/j.1460-9568.2010.07296.x
  20. Fuller S, Munch G, Steele M. Activated astrocytes: a therapeutic target in Alzheimer's disease? Expert Rev Neurother 2009;9:1585-1594. https://doi.org/10.1586/ern.09.111
  21. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics 2010;7:399-412. https://doi.org/10.1016/j.nurt.2010.05.017
  22. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2005;2:22. https://doi.org/10.1186/1742-2094-2-22
  23. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, et al. Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2011;8:67-80. https://doi.org/10.2174/156720511794604543
  24. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ, et al. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease. Brain Res Brain Res Rev 1997;23:47-61. https://doi.org/10.1016/S0165-0173(96)00014-8
  25. Matos M, Augusto E, Oliveira CR, Agostinho P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008;156:898-910. https://doi.org/10.1016/j.neuroscience.2008.08.022
  26. White JA, Manelli AM, Holmberg KH, Van Eldik LJ, Ladu MJ. Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiol Dis 2005;18:459-465. https://doi.org/10.1016/j.nbd.2004.12.013
  27. Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000;7(6 Pt B):682-689. https://doi.org/10.1006/nbdi.2000.0321
  28. Tang BL. Neuronal protein trafficking associated with Alzheimer disease: from APP and BACE1 to glutamate receptors. Cell Adh Migr 2009;3:118-128. https://doi.org/10.4161/cam.3.1.7254
  29. Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO. The role of neuroimmunomodulation in Alzheimer's disease. Ann N Y Acad Sci 2009; 1153:240-246. https://doi.org/10.1111/j.1749-6632.2008.03972.x
  30. Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006;83:470S-474S. https://doi.org/10.1093/ajcn/83.2.470S
  31. Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch Med Res 2008;39:1-16. https://doi.org/10.1016/j.arcmed.2007.10.001
  32. Otth C, Concha II, Arendt T, Stieler J, Schliebs R, Gonzalez-Billault C, et al. AbetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576. J Alzheimers Dis 2002;4:417-430. https://doi.org/10.3233/JAD-2002-4508
  33. Ge YW, Lahiri DK. Regulation of promoter activity of the APP gene by cytokines and growth factors: implications in Alzheimer's disease. Ann N Y Acad Sci 2002;973:463-467. https://doi.org/10.1111/j.1749-6632.2002.tb04684.x
  34. Forloni G, Mangiarotti F, Angeretti N, Lucca E, De Simoni MG. Beta-amyloid fragment potentiates IL-6 and TNF-alpha secretion by LPS in astrocytes but not in microglia. Cytokine 1997;9:759-762. https://doi.org/10.1006/cyto.1997.0232
  35. Marzolo MP, Bu G. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin Cell Dev Biol 2009;20:191-200. https://doi.org/10.1016/j.semcdb.2008.10.005
  36. Meda L, Baron P, Scarlato G. Glial activation in Alzheimer's disease: the role of Abeta and its associated proteins. Neurobiol Aging 2001; 22:885-893. https://doi.org/10.1016/S0197-4580(01)00307-4
  37. Wharton SB, O'Callaghan JP, Savva GM, Nicoll JA, Matthews F, Simpson JE, et al. Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 2009;27:465-473. https://doi.org/10.1159/000217729
  38. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 2010;31:578-590. https://doi.org/10.1016/j.neurobiolaging.2008.05.015
  39. Verkhratsky A, Marutle A, Rodriguez-Arellano JJ, Nordberg A. Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer's disease. Neuroscientist 2014 Aug 14 [Epub]. http://dx.doi.org/10.1177/1073858414547132.
  40. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia 2010;58:831-838.
  41. Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease. J Anat 2012;221:252-262. https://doi.org/10.1111/j.1469-7580.2012.01536.x
  42. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H. Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials. BMJ 2005; 331:321-327. https://doi.org/10.1136/bmj.331.7512.321
  43. Rodda J, Morgan S, Walker Z. Are cholinesterase inhibitors effective in the management of the behavioral and psychological symptoms of dementia in Alzheimer's disease? A systematic review of randomized, placebo-controlled trials of donepezil, rivastigmine and galantamine. Int Psychogeriatr 2009;21:813-824. https://doi.org/10.1017/S1041610209990354
  44. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 1991;12: 383-388. https://doi.org/10.1016/0165-6147(91)90609-V
  45. Liang Z, Valla J, Sefidvash-Hockley S, Rogers J, Li R. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer's disease patients. J Neurochem 2002;80:807-814. https://doi.org/10.1046/j.0022-3042.2002.00779.x
  46. Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 2008;29:507-519. https://doi.org/10.1016/j.yfrne.2008.04.001
  47. Vellas B, Black R, Thal LJ, Fox NC, Daniels M, McLennan G, et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 2009; 6:144-151. https://doi.org/10.2174/156720509787602852
  48. Blasko I, Grubeck-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer's disease. Drugs Aging 2003;20:101-113. https://doi.org/10.2165/00002512-200320020-00002
  49. Imbimbo BP. A n update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer's disease. Expert Opin Investig Drugs 2009;18:1147-1168. https://doi.org/10.1517/13543780903066780
  50. Rodriguez JJ, Terzieva S, Olabarria M, Lanza RG, Verkhratsky A. Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 2013;4:e678. https://doi.org/10.1038/cddis.2013.194
  51. Frizzo ME, Dall'Onder LP, Dalcin KB, Souza DO. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 2004;24:123-128. https://doi.org/10.1023/B:CEMN.0000012717.37839.07
  52. Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2009; 13:61-86.
  53. Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014;88:594-604.
  54. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314-1318. https://doi.org/10.1126/science.1110647
  55. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009;11:111-128.
  56. Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD. Turnover of resident retinal microglia in the normal adult mouse. Glia 2007;55: 1189-1198. https://doi.org/10.1002/glia.20535
  57. Streit WJ, Xue QS. The Brain's Aging Immune System. Aging Dis 2010;1:254-261.
  58. McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987; 79:195-200. https://doi.org/10.1016/0304-3940(87)90696-3
  59. Streit WJ. Microglia and Alzheimer's disease pathogenesis. J Neurosci Res 2004;77:1-8. https://doi.org/10.1002/jnr.20093
  60. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. Age-related alterations in the dynamic behavior of microglia. Aging Cell 2011;10:263-276. https://doi.org/10.1111/j.1474-9726.2010.00660.x
  61. Ard MD, Cole GM, Wei J, Mehrle AP, Fratkin JD. Scavenging of Alzheimer's amyloid beta-protein by microglia in culture. J Neurosci Res 1996;43:190-202. https://doi.org/10.1002/(SICI)1097-4547(19960115)43:2<190::AID-JNR7>3.0.CO;2-B
  62. McLarnon JG. Microglial chemotactic signaling factors in Alzheimer's disease. Am J Neurodegener Dis 2012;1:199-204.
  63. Yates SL, Burgess LH, Kocsis-Angle J, Antal JM, Dority MD, Embury PB, et al. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 2000;74:1017-1025. https://doi.org/10.1046/j.1471-4159.2000.0741017.x
  64. Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol Aging 1988;9:339-349. https://doi.org/10.1016/S0197-4580(88)80079-4
  65. Strohmeyer R, Ramirez M, Cole GJ, Mueller K, Rogers J. Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer's disease brain. J Neuroimmunol 2002;131:135-146. https://doi.org/10.1016/S0165-5728(02)00272-2
  66. Arends YM, Duyckaerts C, Rozemuller JM, Eikelenboom P, Hauw JJ. Microglia, amyloid and dementia in alzheimer disease. A correlative study. Neurobiol Aging 2000;21:39-47.
  67. Landreth GE, Reed-Geaghan EG. Toll-like receptors in Alzheimer's disease. Curr Top Microbiol Immunol 2009;336:137-153.
  68. Tremblay MÈ, Zettel ML, Ison JR, Allen PD, Majewska AK. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 2012;60:541-558. https://doi.org/10.1002/glia.22287
  69. Vaughan DW, Peters A. Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J Neurocytol 1974;3:405-429. https://doi.org/10.1007/BF01098730
  70. Solito E, Sastre M. Microglia function in Alzheimer's disease. Front Pharmacol 2012;3:14.
  71. Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer's disease. Acta Neuropathol 2013;126:461-477. https://doi.org/10.1007/s00401-013-1182-x