DOI QR코드

DOI QR Code

Estimate of Recent Typhoon Maemi· Kompasu·Tembin

최근 태풍 매미·곰파스·템빈의 평가

  • 오종섭 (한려대학교 건설방재공학과) ;
  • 류지협 (한려대학교 건설방재공학과) ;
  • 임익현 (한려대학교 건설방재공학과)
  • Received : 2015.06.01
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

This study is concerned with the estimation of fluctuation wind velocity spectrum and turbulence characteristics in the major cities reflecting the recent meteorological with typhoon wind velocity about 2003 (Maemi) 2010 (Kompasu) 2012 (Tembin). The purpose of this paper is to present spectral analysis for longitudinal component fluctuating velocity. In the processes of analysis, the longitudinal velocity spectrums are compared widely used spectrum models with horizontal wind velocity observations data obtained at Korea Meteorological Adminstration (KMA) and properties of the atmospheric air for typhoon fluctuating wind data are estimated to parameters with turbulency intensity, shear velocity and roughness length.

우리나라 전체 재해의 60%이상은 태풍과 같은 바람재난으로부터 발생하고 있으며, 이러한 자연 재해로부터 구조물이나 외장재의 안전과 사용성 측면에서의 내풍설계 과정에서는 풍속스펙트럼의 평가가 요구된다. 본 논문에서는 최근 우리나라를 통과한 태풍 2003년 매미, 2010년 곰파스, 2012년 템빈의 변동풍속자료로부터 난류의 특성을 알아보기 위하여 6개의 대표지점을 여수, 서울, 청주, 원주, 대구, 속초로 선정했다. 선정된 각 지점에 대한 태풍의 변동풍속자료는 기상청으로부터 획득했다. 기상청으로부터 획득한 변동풍속 자료는 연최대순간풍속과 연최대평균퐁속이 같은 날 발생했기 때문에 각 모집단의 표본 1440개 중 년최대순간풍속이 속하는 740개 풍속자료를 10분 평균풍속으로 가정하여 난류특성을 비교 검토하였다.

Keywords

References

  1. 기상청, 기상자원과 기상자료제공(2003-2012), 2013.
  2. Busch, N.E., Panofsky, H.A., Recent spectra of atmospheric turbulence, QJRMS 94(100), 132-148, 1968. https://doi.org/10.1002/qj.49709440003
  3. Cao, S., et al., Wind characteristics of a strong typhoon, J. of W.E.I.A 97(1), 11-21, 2009.
  4. Counihan, J., Adiabatic atmospheric boundary layer: a review & analysis of data from the period 1880-1972, Atmospheric Environment 9(10), 871-905, 1975. https://doi.org/10.1016/0004-6981(75)90088-8
  5. Davenport A.G., The spectrum of horizontal gustiness near the ground in high winds, QJRMS 87(372), 194-211, 1961. https://doi.org/10.1002/qj.49708737208
  6. Fitchtl,G.H., McVehil, G.E., longitudinal and lateral spectra of turbulence in the atmospheric boundary layer at the kennedy space center, J of Applied Meteorology 9(1), 51-63, 1970. https://doi.org/10.1175/1520-0450(1970)009<0051:LALSOT>2.0.CO;2
  7. Hogstrom, U., Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions, J of the Atmospheric Sciences 47(16), 1949-1972, 1990. https://doi.org/10.1175/1520-0469(1990)047<1949:AOTSIT>2.0.CO;2
  8. Hui, M.C.H., et al., Wind turbulence characteristicc study at the Stonecutters Bridge site; Part II: Wind power spectra, integral length scales and coherences, J of WEIA 97(1), 48-59, 2009b.
  9. Kaimal, J.C., Turbulence spectra, length scales and structure parameters in the stable surface layer, Boundary-Layer Meteorology 4(1), 289-309, 1973. https://doi.org/10.1007/BF02265239
  10. Kaimal, J.C., et al., Spectral characteristics of surface-layer turbulence, QJRMS 98(417), 563-589, 1972. https://doi.org/10.1002/qj.49709841707
  11. Kaimal, J.C., et al., Tuebulence structure in the convective biundary layer, J of the Atmospheric Sciences 33(11), 2152-21692, 1976. https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
  12. Kaimal, J.C., Horizontal velocity spectra in an unstable surface layer, J of the Atmospheric Sciences 35(1), 18-24, 1978. https://doi.org/10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2
  13. Kareem, A. Wind-induced response analysis of tension leg platforms, J of Structural Engineering 111(1), 37-55, 1985a. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:1(37)
  14. Karman, T.V., Progress in the statistical theory of turbulence, Proceedings of the National Academy of Science of the USA 34(11) 530-539, 1948.
  15. Li, I., et al., Modeling typhoon wind power spectra near sea surface based on measurements in the South Chin J of WEIA 104-106, 565-576, 2012.
  16. Li, L., et al., A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds. J of WEIA 149, 49-66, 2015.
  17. Lulmey, J.L., Panofsky, H.A., The structure of atmospheric turbulenc, John Wiley & Sons, Inc., New York, 1964.
  18. Masters, F.J., et al., Surface wind measurements in three Gulf Coast hurricanes of 2005, J of WEIA 98(10-111), 533-547, 2010.
  19. Repetto, M.P., Neutral and non-neutral atmosphere: Probabilistic characterization and wind-induced response of structures, J of WEAI 99(9), 969-978, 2011.
  20. Simiu, E., Wind spectra and dynamic alongwind response, J od SD 100(9), 1897-1910, 1974.
  21. Simiu, E., Scanlan, R.H., Wind effects on structure: Fundamentals and applications to design.
  22. Solari, G., Turbulence modeling for gust loading, J of SD 113(7), 1550-1569, 1987.
  23. Solari, G., Gust buffeting, I: peak wind velocity and equivalent pressure, J of SD 119(2), 365-382, 1993.
  24. Solari, G., Piccardo, G., Probabilistic 3-D turbulence modeling for gust buffeting of structures, Probabilistic Engineering Mechanics 16(1), 73-86, 2001. https://doi.org/10.1016/S0266-8920(00)00010-2
  25. Tieleman, H.W., University of velocity spectra, 11th Austr. Fluid Mech. Conf. Univer. of Tasmania, 965-968, 1992.
  26. Tieleman, H.W., University of velocity spectra, J of WEAI 56(1), 55-69, 1995.
  27. Wang, B., et al., Wind gust and turbulence statistics of typhoon is South China, Acta Meteorological 25(1), 113-127, 2011. https://doi.org/10.1007/s13351-011-0009-8