DOI QR코드

DOI QR Code

Recent Advances in Nanozyme Research for Disease Diagnostics

질병진단을 위한 나노자임 연구의 최근 동향

  • Shin, Ho Yun (Department of BioNano Technology, Gachon University) ;
  • Yoon, Tae Young (Department of BioNano Technology, Gachon University) ;
  • Kim, Moon Il (Department of BioNano Technology, Gachon University)
  • 신호연 (가천대학교 바이오나노학과) ;
  • 윤태영 (가천대학교 바이오나노학과) ;
  • 김문일 (가천대학교 바이오나노학과)
  • Received : 2014.12.08
  • Accepted : 2015.01.13
  • Published : 2015.02.27

Abstract

Nanomaterial-based artificial enzymes (Nanozymes) have attracted recent attention because of their unique advantageous characteristics such as excellent robustness and stability, low-cost production by facile scale-up, and longterm preservation capability that are critically required as an alternative to natural enzymes. These nanozymes exhibit natural enzyme-like activity, and they have been applied to diverse kinds of detection methods for disease-associated biomolecules such as DNAs, proteins, cells, and small molecules including glucose. To highlight the progress in the field of disease diagnostics using nanozyme, this review discusses many nanozyme-based detection methods categorized by the types of target biomolecules. Finally, we address the current challenges and perspectives for the widespread utilization of nanozyme-based disease diagnostics.

Keywords

References

  1. The Global Network of Korean Scientists & Engineers (KOSEN), Issue report. http://www.kosen21.org. (2014).
  2. Vincent, M., Y. Xu, and H. Kong (2004) Helicase-dependent isothermal DNA amplification. EMBO rep. 5: 795-800. https://doi.org/10.1038/sj.embor.7400200
  3. Compton, J. (1991) Nucleic acid sequence-based amplification. Nature 350: 91-92. https://doi.org/10.1038/350091a0
  4. Kwoh, D. Y., G. R. Davis, K. M. Whitfield, H. L. Chappelle, L. J. DiMichele, and T. R. Gingeras (1989) Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc. Natl. Acad. Sci. USA. 86: 1173-1177. https://doi.org/10.1073/pnas.86.4.1173
  5. Hill, H. D. and C. A. Mirkin (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc. 1: 324-336. https://doi.org/10.1038/nprot.2006.51
  6. Kurn, N., P. Chen, J. D. Heath, A. Kopf-Sill, K. M. Stephens, and S. Wang (2005) Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin. Chem. 51: 1973-1981. https://doi.org/10.1373/clinchem.2005.053694
  7. Piatek, A. S., S. Tyagi, A. C. Pol, A. Telenti, L. P. Miller, F. R. Kramer, and D. Alland (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat. Biotechnol. 16: 359-363. https://doi.org/10.1038/nbt0498-359
  8. Wei, H. and E. Wang (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42: 6060-6093. https://doi.org/10.1039/c3cs35486e
  9. Gao, L. Z., J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, and X. Yan (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2: 577-583. https://doi.org/10.1038/nnano.2007.260
  10. Perez, J. M. (2007) Iron oxide nanoparticles : Hidden talent. Nat. Nanotechnol. 2: 535-536. https://doi.org/10.1038/nnano.2007.282
  11. Van Winkle, D. H., A. Beheshti, and R. L. Rill (2002) DNA electrophoresis in agarose gels: A simple relation describing the length dependence of mobility. Electrophoresis 23: 15-19. https://doi.org/10.1002/1522-2683(200201)23:1<15::AID-ELPS15>3.0.CO;2-L
  12. Higuchi, R., C. Fockler, G. Dollinger, and R. Watson (1993) Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Nat. Biotechnol. 11: 1026-1030. https://doi.org/10.1038/nbt0993-1026
  13. Tyagi, S. and F. R. Kramer (1996) Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 14: 303-308. https://doi.org/10.1038/nbt0396-303
  14. Espy, M. J., J. R. Uhl, L. M. Sloan, S. P. Buckwalter, M. F. Jones, E. A. Vetter, J. D. C. Yao, N. L. Wengenack, J. E. Rosenblatt, F. R. Cockerill, and T. F. Smith (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19: 165-256. https://doi.org/10.1128/CMR.19.1.165-256.2006
  15. Mirkin, C. A., R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382: 607-609. https://doi.org/10.1038/382607a0
  16. Sato, K., K. Hosokawa, and M. Maeda (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 125: 8102-8103. https://doi.org/10.1021/ja034876s
  17. Li, H. X. and L. Rothberg (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 101: 14036-14039. https://doi.org/10.1073/pnas.0406115101
  18. Lee, J. S., A. K. R. Lytton-Jean, S. J. Hurst, and C. A. Mirkin (2007) Silver nanoparticle oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett. 7: 2112-2115. https://doi.org/10.1021/nl071108g
  19. Ho, H. A., M. Boissinot, M. G. Bergeron, G. Corbeil, K. Dore, D. Boudreau, and M. Leclerc (2002) Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Ed. 41: 1548-1551. https://doi.org/10.1002/1521-3773(20020503)41:9<1548::AID-ANIE1548>3.0.CO;2-I
  20. Ahn, D. J., E. H. Chae, G. S. Lee, H. Y. Shim, T. E. Chang, K. D. Ahn, and J. M. Kim (2003) Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli. J. Am. Chem. Soc. 125: 8976-8977. https://doi.org/10.1021/ja0299001
  21. Jung, Y. K., T. W. Kim, J. Kim, J. M. Kim, and H. G. Park (2008) Universal colorimetric detection of nucleic acids based on polydiacetylene (PDA) liposomes. Adv. Funct. Mater. 18: 701-708. https://doi.org/10.1002/adfm.200700929
  22. Guo, Y. J., L. Deng, J. Li, S. J. Guo, E. K. Wang, and S. J. Dong (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of singlenucleotide polymorphism. ACS Nano 5: 1282-1290. https://doi.org/10.1021/nn1029586
  23. Liu, M., H. M. Zhao, S. Chen, H. T. Yu, and X. Quan (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6: 3142-3151. https://doi.org/10.1021/nn3010922
  24. Liu, M., H. M. Zhao, S. Chen, H. T. Yu, and X. Quan (2012) Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chem. Commun. 48: 7055-7057. https://doi.org/10.1039/c2cc32406g
  25. Singh, A., S. Patra, J. A. Lee, K. H. Park, and H. Yang (2011) An artificial enzyme-based assay: DNA detection using a peroxidaselike copper-creatinine complex. Biosens. Bioelectron. 2: 4798-4803.
  26. Park, K. S., M. I. Kim, D. Y. Cho, and H. G. Park (2011) Labelfree colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 7: 1521-1525. https://doi.org/10.1002/smll.201001886
  27. Kim, M. I., K. S. Park, and H. G. Park (2014) Ultrafast colorimetric detection of nucleic acids based on the inhibition of the oxidase activity of cerium oxide nanoparticles. Chem. Commun. 50: 9577-9580. https://doi.org/10.1039/C4CC03841J
  28. Kim, M. I., Y. J. Ye, M. A. Woo, J. Lee, and H. G. Park (2013) A Highly efficient colorimetric immunoassay using a nanocomposite entrapping magnetic and platinum nanoparticles in ordered mesoporous carbon. Adv. Healthc. Mater. 3: 36-41.
  29. Zhang, S., G. L. Zhou, X. L. Xu, L. L. Cao, G. H. Liang, H. Chen, B. H. Liu, and J. L. Kong (2011) Development of an electrochemical aptamer-based sensor with a sensitive $Fe_3O_4$ nanopaticle-redox tag for reagentless protein detection. Electrochem. Commun. 13: 928-931. https://doi.org/10.1016/j.elecom.2011.06.002
  30. Lien, C. W., C. C. Huang, and H. T. Chang (2012) Peroxidasemimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun. 48: 7952-7954. https://doi.org/10.1039/c2cc32833j
  31. Qu, F. L., T. Li, and M. H. Yang (2011) Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens. Bioelectron. 26: 3927-3931. https://doi.org/10.1016/j.bios.2011.03.013
  32. Hong, F. S. (2002) Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biol. Trace Elem. Res. 87: 191-200. https://doi.org/10.1385/BTER:87:1-3:191
  33. Tarnuzzer, R. W., J. Colon, S. Patil, and S. Seal (2005) Vacancy engineered ceria nanostructures for protection from radiationinduced cellular damage. Nano Lett. 5: 2573-2577. https://doi.org/10.1021/nl052024f
  34. Asati, A., S. Santra, C. Kaittanis, S. Nath, and J. M. Perez (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 48: 2308-2312. https://doi.org/10.1002/anie.200805279
  35. Asati, A., C. Kaittanis, S. Santra, and J. M. Perez (2011) pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal. Chem.83: 2547-2553.
  36. Sudimack, J. and R. J. Lee (2000) Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41: 147-162. https://doi.org/10.1016/S0169-409X(99)00062-9
  37. Fan, K. L., C. Q. Cao, Y. X. Pan, D. Lu, D. L. Yang, J. Feng, L. N. Song, M. M. Liang, and X. Y. Yan (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7: 459-464. https://doi.org/10.1038/nnano.2012.90
  38. Kaittanis, C., S. Santra, and J. M. Perez (2009) Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Am. Chem. Soc. 131: 12780-12791. https://doi.org/10.1021/ja9041077
  39. Wu, Y. H., M. J. Song, Z. A. Xin, X. Q. Zhang, Y. Zhang, C. Y. Wang, S. Y. Li, and N. Gu (2011) Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology 22: 225703-225710. https://doi.org/10.1088/0957-4484/22/22/225703
  40. Kim, M. I., M. S. Kim, M. A. Woo, Y. Ye, K. S. Kang, J. Lee, and H. G. Park (2014) Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxidemagnetic-platinum nanohybrids. Nanoscale 6: 1529-1536. https://doi.org/10.1039/C3NR05539F
  41. Lee, Y. C., M. I. Kim, M. A. Woo, H. G. Park, and J. I. Han (2013) Effective peroxidase-like activity of a water-solubilized Fe-aminoclay for use in immunoassay. Biosens Bioelectron. 42: 373-378. https://doi.org/10.1016/j.bios.2012.10.092
  42. Wang, K., J. J. Xu, D. C. Sun, H. Wei, and X. H. Xia (2005) Selective glucose detection based on the concept of electrochemical depletion of electroactive species in diffusion layer. Biosens. Bioelectron. 20: 1366-1372. https://doi.org/10.1016/j.bios.2004.05.009
  43. Wei, H. and E. Wang (2008) $Fe_3O_4$ magnetic nanoparticles as peroxidase mimetics and their applications in $H_2O_2$ and glucose detection. Anal. Chem. 80: 2250-2254. https://doi.org/10.1021/ac702203f
  44. Natalio, F., R. Andre, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, and W. Tremel (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 7: 530-535. https://doi.org/10.1038/nnano.2012.91
  45. Jiao, X., H. J. Song, H. H. Zhao, W. Bai, L. C. Zhang, and Y. Lv(2012) Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for $H_2O_2$ and glucose detection. Anal. Methods 4: 3261-3267. https://doi.org/10.1039/c2ay25511a
  46. Zhu, A. P., K. Sun, and H. R. Petty (2012) Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO(2) nanoparticles. Inorg. Chem. Commun. 15: 235-237. https://doi.org/10.1016/j.inoche.2011.10.034
  47. Chen, Z. W., J. J. Yin, Y. T. Zhou, Y. Zhang, L. Song, M. J. Song, S. L. Hu, and N. Gu (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6: 4001-4012. https://doi.org/10.1021/nn300291r
  48. He, W. W., Y. Liu, J. S. Yuan, J. J. Yin, X. C. Wu, X. N. Hu, K. Zhang, J. B. Liu, C. Y. Chen, Y. L. Ji, and Y. T. Guo (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32: 1139-1147. https://doi.org/10.1016/j.biomaterials.2010.09.040
  49. Fan, J., J. J. Yin, B. Ning, X. C. Wu, Y. Hu, M. Ferrari, G. J. Anderson, J. Y. Wei, Y. L. Zhao, and G. J. Nie (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32: 1611-1618. https://doi.org/10.1016/j.biomaterials.2010.11.004
  50. Chen, W., J. Chen, Y. B. Feng, L. Hong, Q. Y. Chen, L. F. Wu, X. H. Lin, and X. H. Xia (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137: 1706-1712. https://doi.org/10.1039/c2an35072f
  51. Yu, C. J., C. Y. Lin, C. H. Liu, T. L. Cheng, and W. L. Tseng (2010) Synthesis of poly(diallyldimethylammonium chloride)-coated $Fe_3O_4$ nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosens. Bioelectron. 26: 913-917. https://doi.org/10.1016/j.bios.2010.06.069
  52. Cao, X. and N. Wang (2011) A novel non-enzymatic glucose sensor modified with $Fe_2O_3$ nanowire arrays. Analyst 136: 4241-4246. https://doi.org/10.1039/c1an15367f
  53. Luo, W. J., C. F. Zhu, S. Su, D. Li, Y. He, Q. Huang, and C. H. Fan (2010) Self-catalyzed, self-limiting growth of glucose oxidasemimicking gold nanoparticles. ACS Nano 4: 7451-7458. https://doi.org/10.1021/nn102592h
  54. Kim, M. I., J. M. Shim, T. Li, M. A. Woo, D. Y. Cho, J. W. Lee, and H. G. Park (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137: 1137-1143. https://doi.org/10.1039/c2an15889b
  55. Kim, M. I., J. M. Shim, T. Li, J. Lee, and H. G. Park (2011) Fabrication of nanoporous nanocomposites entrapping $Fe_3O_4$ magnetic nanoparticles and oxidases for colorimetric biosensing. Chem.-Eur. J. 17: 10700-10707. https://doi.org/10.1002/chem.201101191
  56. Kim, M. I., J. M. Shim, H. J. Parab, S. C. Shin, J. Lee, and H. G. Park (2012) A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. J. Nanosci. Nanotechnol. 12: 5914-5919. https://doi.org/10.1166/jnn.2012.6375