DOI QR코드

DOI QR Code

표면파 측정을 통한 콘크리트 슬래브의 표면균열 깊이 측정

Evaluating the Depth of a Surface-opening Crack in Concrete Slabs using Surface wave Measurements

  • 기성훈 (동아대학교 건축공학과)
  • Received : 2014.08.07
  • Accepted : 2014.12.30
  • Published : 2015.05.30

Abstract

본 논문에서는 비접촉 표면파 측정을 이용하여 콘크리트 슬래브에 발생한 표면균열의 깊이를 측정하기 위한 비파괴 검사법을 연구하였다. 이를 위하여 표면파 측정, 해석 및 균열 깊이 평가의 과정을 포함한 새로운 측정모델을 제안하였다. 먼저, 3차원 유한요소해석 모델을 이용하여 표면파의 에너지와 콘크리트 균열의 깊이의 상관관계를 표현하는 표면파 전달함수를 구하였다. 제안된 측정모델은 실험을 통하여 증명하였다. 한 쌍의 비접촉 센서를 이용하여 깊이 0~100mm의 10개의 표면균열을 포함한 콘크리트 슬래브 ($1500{\times}1500{\times}180mm^3$)을 통과하여 전달되는 표면파를 측정하였다. 측정모델은 콘크리트 균열 깊이에 대하여 약 최대 10%의 오차를 보이며 실제 깊이를 예측하는 것으로 나타났다. 비접촉 표면파 측정을 통하여 얻은 결과는 기존의 TOFD에 바탕을 둔 초음파법에서 얻은 결과보다 향상된 정확도를 보이는 것으로 나타났다. 특히 비접촉 센서의 특성상 매우 향상된 측정 속도 및 측정값의 일관성을 얻을 수 있었다. 본 연구에서는 모델의 실제구조물에 적용성에 관한 토의를 포함하고 있다.

Non-contact surface wave transmission (SWT) measurements are used to evaluate the depth of a surface-breaking crack in concrete slabs. The author propose a measurement model that includes an appropriate configuration of the source and receivers, and a transmission function for the given configuration. A series of numerical simulations using a 3D finite element model is used to obtain the transmission function. Then, validity of a proposed model is verified through experimental studies. Two air-coupled sensors are used to measured surface waves across surface-breaking cracks with varying depths from 0mm to 100mm with intervals of 10mm in a concrete slab ($1500{\times}1500{\times}180mm^3$) in laboratory. As a result, the proposed method is demonstrated as to be effective for charactering the depth of a surface-breaking crack in concrete bridge deck with an average error of 10%. A discussion on practical applications of the proposed method is also included in this article.

Keywords

References

  1. ABAQUS Inc. (2011), Analysis user's Manual v.6.10-EF2, Providence, RI.
  2. Achenbach, J. D., Keer, L. M., and Mendelsohn, D. A. (1980), Elastodynamic Analysis of an Edge Crack, Journal of Applied Mechanics, 47, 551-556. https://doi.org/10.1115/1.3153730
  3. ACI committee 228 (1998), Nondestructive Tesst Methods for Evaluation of Concrete in Structures, Report ACI 228.2R-98, Farmington Hills, MI.
  4. Chai, H. K., Momoki, S., Aggelis, D. G., and Shiotani, T. (2010), Characterization of Deep Surface-Opening Cracks in Concrete: Feasibility of Impact-Generated Rayleigh-Waves, ACI Materials Journal, 107, 305-311.
  5. Hevin, G., Abraham, O., Petersen, H. A., and Campillo, M. (1998), Characterization of surface cracks with Rayleigh waves: a numerical model, NDT & EInternational, 31, 289-298. https://doi.org/10.1016/S0963-8695(98)80013-3
  6. Kee, S. H., and Zhu, J. (2010), Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete, The Journal of the Acoustical Society of America, 127, 1279-1287. https://doi.org/10.1121/1.3298431
  7. Kim, M. S., Baek, D. I., and Youm, C. S. (2007), A Study on the Strength Prediction of Crushed Sand Concrete by Ultrasonic Velocity Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 11, 71-78 (in Korean).
  8. Masserey, B., and Mazza, E. (2007), Ultrasonic sizing of short surface cracks, Ultrasonics, 46, 195-204. https://doi.org/10.1016/j.ultras.2007.02.001
  9. Mendelsohn, D. A., Achenbach, J. D. and Keer, L. M. (1980), Scattering of elastic waves by a surface-breaking crack, WaveMotion, 2, 277-292.
  10. Na, J. K., and Blackshire, J. L. (2010), Interaction of Rayleigh surface waves with a tightly closed fatigue crack, NDT & E International, 43, 432-439. https://doi.org/10.1016/j.ndteint.2010.04.003
  11. Popovics, J. S., Song, W. J., Ghandehari, M., Subramaniam, K. V., Achenbach, J. D., and Shah, S. P. (2000), Application of surface wave transmission measurements for crack depth determination in concrete, ACI Materials Journal, 97, 127-135.
  12. Shin, S. W., Zhu, J., Min, J., and Popovics, J. S. (2008), Crack depth estimation in concrete using energy transmission of surface waves, ACI Materials Journal, 105, 510-516.
  13. Song, W. J., Popovics, J. S., Aldrin, J. C., and Shah, S. P. (2003), Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete, The Journal of the Acoustical Society of America, 113, 717-725. https://doi.org/10.1121/1.1537709

Cited by

  1. Determination of Elastic Velocity of Plate-like Specimen for Estimation of Structural Damage Location vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.249