DOI QR코드

DOI QR Code

영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구

An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork

  • 박찬영 (가톨릭관동대학교 토목공학과) ;
  • 유승운 (가톨릭관동대학교 토목공학과)
  • 투고 : 2014.08.06
  • 심사 : 2015.01.30
  • 발행 : 2015.05.30

초록

최근 들어 FRP 판을 영구 거푸집 및 주요 인장보강재로 활용하기 위한 새로운 콘크리트 교량 바닥판 시스템 개발에 대한 연구가 활발히 진행되고 있다. 영구거푸집과 인장 보강재로의 병행이용은 기존의 콘크리트 바닥판 보다 공사비와 공사기간을 절감 할 수 있다. 본연구에서는 영구거푸집 및 주요인장재로 활용한 FRP 판의 종류에 따른 현장타설 콘크리트와 부착응력에 대해 실험을 수행하였다. 부착성능 평가를 실시하였고, 부착특성을 나타내는 중요한 변수중에 하나로서 부착 강도 및 부착면의 파괴 매커니즘 특성을 알 수 있는 계면 파괴에너지를 나타내었다. 일반콘크리트에서 계면 파괴에너지는 GF11의 경우 0.24kN/m이고, GF21의 경우에는 0.43kN/m, GF31과 CF11의 경우에는 각각 0.46kN/m와 0.44kN/m로 나타났고, RFCON에서는 GF12의 경우 0.52kN/m, GF22와 CF12에서는 각각 0.36kN/m와 0.51kN/m로 나타났다.

Development of new concrete bridge deck system with FRP plank using as a permanent formwork and the main tensile reinforcement recently has been actively conducted. Concurrent use as a reinforcing material and a permanent formwork, it is possible to reduce the construction time and construction costs than the usual concrete slab. In this study, an experiment was carried out for the bond stress between cast-in-place concrete and the type of FRP plank using as a permanent formwork. The interfacial fracture energy that can be one of the most important parameters were evaluated for adhesion performance and bond stress to know the characteristics of the failure mechanism of the adhesion surface. Interfacial fracture energy of normal concrete is 0.24kN/m of GF11 case, in the case of GF21, 0.43kN/m appears, in the case of CF11 and GF31, 0.44kN/m and 0.46kN/m respectively it appeared. In case of RFCON, 0.52kN/m appears from GF12, the CF12 and GF22, 0.51kN/m and 0.36kN/m appeared each case.

키워드

참고문헌

  1. Bank, L. C., Oliva, M. G., Bae H. U., and Bindrich, B. V. (2010), Hybrid Concrete and Pultruded-Plank Slabs for Highway and Pedestrian Bridges, Journal of Construction and Building Materials, 24(4), 552-558. https://doi.org/10.1016/j.conbuildmat.2009.10.002
  2. Berg, A. C., Bank, L. C., Oliva, M. G., and Russell, J. S. (2006), Construction and Cost Analysis of an FRP Reinforced Concrete Bridge Deck, Construction and Building Materials, 20(8), 515-526. https://doi.org/10.1016/j.conbuildmat.2005.02.007
  3. Cho, K. H., Cho, J. R., Lee, Y. H., and Kim, B. S. (2004), Fracture Mechanics Based Bond-Slip Models for the Interface between FRP and Concrete, Proceeding of Conference on Korean Society of Civil Engineers, KSCE, 24(4), 653-661.
  4. Dai, J., Ueda, T., and Sato, Y. (2005), Development of the Nonlinear Bond Stress-slip Model of Fiber Reinforced Plastics Sheet-Concrete Interfaces with a Simple Method, Journal of Composites for Constructions, 9(1), 52-62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52)
  5. Dieter, D. A., Dietsche, J. S., Bank, L. C., Oliva, M. G., and Russell, J. S. (2002), Concrete Bridge Decks Constructed whit FRP Stay-in-place Forms and FRP Grid Reinforcing, Journal of the Transportation Research Record, 1814, 219-226. https://doi.org/10.3141/1814-26
  6. Ji, H. S., Son, B. J., and Chang, S. Y. (2001), An Experimental Study on the Behavior of Composite Materials Bridge Decks for Use in Deteriorated Bridge Decks Replacement, Journal of Steel Structures, KSSC, 13(6), 631-640.
  7. Kitane, Y., Aref, A. J., and Lee, G. C. (2004), Static and Fatigue Testing of Hybird Fiber-Reinforced Polymer-Concrete Bridge Superstructure, Journal of Composites for Construction, ASCE, 8(2), 182-190. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(182)
  8. Oehlers, D. J., and Seracino, R. (2004), Design of FRP steel plated RC Structures, Elsevier, UK.
  9. Reising, R. M. W., Shahrooz, B. M., Hunt, V. J., and Helmicki, A. J. (2004b), Performance Comparison of Four Fiber-Reinforced Polymer Deck Panels, Journal of Composites for Construction, ASCE, 8(3), 265-274. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(265)
  10. Reising, R. M. W., Shahrooz, B. M., Hunt, V. J., Neumann, A. R., Helmicki, A. J., and Hastak, M. (2004a), Close Look at Construction Issues and Performance of Four Fiber-Reinforced Polymer Composite Bridge Decks, Journal of Composites for Construction, ASCE, 8(1), 33-42. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:1(33)
  11. Shao, Y., Wu, Z. S., and Bian, J. (2005), Wet-bonding between FRP Laminates and Cast-in-place Concrete, Int. Symposium on Bond Behaviour of FRP in Structures, IIFC, Hong Kong.
  12. Taljsten, B. (1997), Defining Anchor Lengths of Steel and CFRP Plates Bonded to Concrete, Int. Journal of Adhesion and Adhesives, 17, 319-327. https://doi.org/10.1016/S0143-7496(97)00018-3
  13. Teng, J. G., Chen, J. F., Smith, S. T., and Lam, L. (2002), FRP Strengthened RC Structures, John Wiely & Sons, England.
  14. Yoo, S. W., and Bae, H. U. (2007), Bond-Slip Behavior between Cast-in-place Concrete and FRP Plank Used as Permanent Formwork and Tensile Reinforcement, Journal of Korea Concrete Institute, 27(1), 69-77.
  15. Yun, H. D., Yang, L. S., Han, B. C., Fukuyama, H., and Suwada, H. (2004), State-of-the-art of Ductile Fiber Reinforced Cementitious Composites - Part1: Manufacture Technology and Structural Performance, Journal of Korea Concrete Institute, 16(5), 49-58.