Optimization of Processing Conditions for the Production of Puffed Rice

팽화미 제조 공정조건의 최적화

  • Cheon, Hee Soon (Dept. of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Cho, Won Il (CJ Foods R&D, CJ Cheiljedang Corporation) ;
  • Jhin, Changho (Dept. of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Back, Kyeong Hwan (SAMYANG Foods R&D, SAMYANG Corporation) ;
  • Ryu, Kyung Heon (SAMYANG Foods R&D, SAMYANG Corporation) ;
  • Lim, Su Youn (SAMYANG Foods R&D, SAMYANG Corporation) ;
  • Chung, Myong Soo (Dept. of Food Science and Engineering, Ewha Womans University) ;
  • Choi, Jun Bong (Graduate School of Hotel and Tourism, Suwon University) ;
  • Lim, Taehwan (Dept. of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Hwang, Keum Taek (Dept. of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University)
  • 천희순 (서울대학교 식품영양학과.생활과학연구소) ;
  • 조원일 (CJ제일제당(주)) ;
  • 진창호 (서울대학교 식품영양학과.생활과학연구소) ;
  • 백경환 (삼양그룹 식품연구소) ;
  • 류경헌 (삼양그룹 식품연구소) ;
  • 임수연 (삼양그룹 식품연구소) ;
  • 정명수 (이화여자대학교 식품공학과) ;
  • 최준봉 (수원대학교 호텔관광대학원) ;
  • 임태환 (서울대학교 식품영양학과.생활과학연구소) ;
  • 황금택 (서울대학교 식품영양학과.생활과학연구소)
  • Received : 2014.10.02
  • Accepted : 2015.01.30
  • Published : 2015.02.28

Abstract

The objective of this study was to optimize processing conditions for the production of an instant puffed rice product using response surface methodology (RSM) and contour analysis. Sensory and texture qualities, and physical properties of the puffed rice were analyzed with various processing conditions related to drying and puffing temperature, and moisture content. Preference, color intensity, cohesiveness, rehydration ratio, density and lightness of the puffed rice product significantly varied depending on the processing conditions. The responses showed high $R^2$ values (0.623, 0.852, 0.735, 0.688, and 0.790) and lack-of-fit. Rehydration ratio was found to have a negative correlation with density in the condition of drying and puffing temperature. Lightness and preference scores of the puffed rice increased as the moisture content increased. According to RSM, the preference scores were very highly related to the moisture content, and the optimum processing conditions of the puffed rice product were at $40^{\circ}C$ of drying temperature, with 11.0% of moisture content, and at $232.7^{\circ}C$ of puffing temperature.

본 연구는 팽화미를 제조할 때 팽화미 품질에 영향을 미치는 세 가지의 조건인 건조 온도, 수분함량, 퍼핑 온도를 달리하고, 반응표면분석법과 등고선분석법을 이용하여 팽화미의 최적 제조 조건을 검토한 연구이다. 팽화미 제조에 적합한 국내산 신동진미를 팽화미 원료로 사용했고, 총 27가지 조건($3{\times}3$)에서 팽화미를 제조 후, 관능검사, 조직감, 색도, 밀도, 복원율, 크기 등 총 29개의 반응변수를 분석하였다. 그 결과, 공정에서 유의적으로 영향을 주는 반응변수는 선호도, 색의 강도, 밀도, 복원율, 명도, 응집성이었다. 반응표면분석과 등고선분석 결과, 기호도는 수분 함량, 명도는 수분 함량 및 퍼핑 온도와 상관관계가 높았다. 퍼핑 전과 퍼핑 후의 팽화미를 SEM 촬영을 통해 비교한 결과, 수분함량이 높을수록 쌀 단면 공극이 더 균일했으며, 기공이 많이 발생했다. 반응변수의 최적범위는 선호도 3.5 이상을 기본조건으로 하여 밀도는 40 이상, 응집성은 0.37부터 0.4까지, 그리고 복원율, 색의 강도, L value는 각각 2.75부터 3.0까지, 2.92 미만, 80.7 이상일 때 유효한 범위를 나타냈다. 팽화미 제조의 최적 공정조건은 건조온도 $40^{\circ}C$, 수분함량 11%, 퍼핑온도 $232.7^{\circ}C$ 이었다. 본 연구는 팽화미 제조에 영향을 미치는 요인들에 관한 기초 자료를 제공해 주며, 팽화미의 최적 조건을 활용하여 제조 시, 전자레인지 및 열수에 복원되는 팽화미의 품질의 향상이 기대된다.

Keywords

References

  1. Bhullar NK, Wilhelm G (2013). Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31(1):50-57. https://doi.org/10.1016/j.biotechadv.2012.02.001
  2. Heo NK, Kim KD, Choi BG, Kim KH, Min HK, Kwon HJ (2005). Improvement of storaging ability of waxycorn by retort pouch technique. Korean J Crop Sci 50:147-151.
  3. Joshi ND, Debabandya M, Joshi DC (2014). Varietal selection of some indica rice for production of puffed rice. Food Bioprocess Tech 7(1):299-305. https://doi.org/10.1007/s11947-013-1056-1
  4. Lee EY, Jung JH, Shin HH, Lee SH, Pyun YR (2000). Studies on optimum cooking conditions for commercial continuous rice cooker. Korean J Food Sci Technol 32(1):90-96.
  5. Lee JE, Kim YJ, Cho MG, Park SY, Kim EM, Cho YS, Choi YH (2012). Physicochemical properties of extruded rice flour and gelatinization popped rice flour. Korean J Food & Nutr 25(6):850-854. https://doi.org/10.9799/ksfan.2012.25.4.850
  6. Lee HJ, Lee IS, Jeong HS (2012). Characteristics of Takju with different varieties of rice and particle size. Korean J Culinary Res 18(3):191-205.
  7. Lee HY (2003). The processing industries and industrialization of cooked rice in Korea. Bulletin Food Technol 23(4):456-474.
  8. Maisont S, Woatthichai N (2009). Effects of some physicochemical properties of paddy rice varieties on puffing qualities by microwave "ORIGINAL" Kasetsart J (Nat Sci) 43(3):566-575.
  9. Maran JP, Manikandan S (2012). Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly fruit. Dyes Pigments 95:465-472. https://doi.org/10.1016/j.dyepig.2012.06.007
  10. Myers RH, Montgomery DC (2002). Response Surface Methodology: Process and Product Optimization using Designed Experiments. second edition. John Wiley and Sons, Inc., New York.
  11. Pakorn L, Somkiat P, Adisak N, Somchart SP (2008). Effect of temperature on drying characteristics and quality of cooked rice. LWT-Food Sci Technol 41:716-723. https://doi.org/10.1016/j.lwt.2007.04.010
  12. Prasert W, Prisana S (2009). Optimization of instant jasmine rice process and its physicochemical properties. J Food Eng 95(1):54-61. https://doi.org/10.1016/j.jfoodeng.2009.04.008
  13. Park KH, Lee BS, Kim DS (2011). The effect of the selection attribute of local Jeonju-bibimbop restaurants on customer satisfaction and behavioral intention. Korean J Culinary Res 17(3):47-64.
  14. Park SJ, Choi YB, Ko JR, Rha YA, Lee HY (2014). Quality characteristics of citrus fruit by cyclic low pressure drying and high hydrostatic pressure extraction. Korean J Culinary Res 20(3):13-21.
  15. Pimentel D, Pimentel M (2003). Sustainability of meat-based and plant-based diets and the environment. J Clin Nutr 78(3):660-663. https://doi.org/10.1093/ajcn/78.3.660S
  16. Priya B, Rangaraju V, Mariappanadar V (2013). Response surface optimization of process variables for microencapsulation of galic oleoresin by spray drying. Biosyst Eng 114:205-213. https://doi.org/10.1016/j.biosystemseng.2012.12.008
  17. Rewthong O, Soponronnarit S, Taechapairoj C, Tungtrakul P, Prachayawarakorn S (2011). Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J Food Eng 103(3):258-264. https://doi.org/10.1016/j.jfoodeng.2010.10.022
  18. Semwal AD, Harma SGK, Arya SS (1996). Flavor degradation in dehydrated convenience foods, changes in carbonyls in quick cooking rice and Bengal Gram. Food Chem 57:233-239. https://doi.org/10.1016/0308-8146(95)00208-1
  19. Shierly P, Robert HD (2007). Effect of degree of gelatinisation on the rheology and rehydration kinetics of instant rice produced by freeze drying. Int J Food Prop 10(3):445-453. https://doi.org/10.1080/10942910600871289
  20. Wang JP, An HZ, Jin ZY, Xie ZJ, Zhuang HN, Kim JM (2013). Emulsifiers and thickeners on extrusion-cooked instant rice product. J Food Sci Technol 50(4):655-666. https://doi.org/10.1007/s13197-011-0400-6