DOI QR코드

DOI QR Code

Growth Performances of Container Seedlings of Deciduous Hardwood Species Grown at Three Different Fertilization Treatments

시비처리에 따른 활엽수 용기묘의 생장 특성 변화

  • Cho, Min Seok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Yang, A-Ram (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Hwang, Jaehong (Forest Practice Research Center, Korea Forest Research Institute)
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 양아람 (국립산림과학원 산림생산기술연구소) ;
  • 황재홍 (국립산림과학원 산림생산기술연구소)
  • Received : 2014.08.18
  • Accepted : 2014.10.01
  • Published : 2015.03.31

Abstract

The objective of this study was to find optimal amount of fertilization of container seedling production for Zelkova serrata, Ulmus parvifolia, Betula costata and Tilia amurensis. To reach our goal, we measured root collar diameter (RCD), height, biomass and seedling quality index (SQI) of container seedlings of four deciduous hardwood species grown at three different fertilization treatments ($0.5g{\cdot}L^{-1}$, $1.0g{\cdot}L^{-1}$ and $2.0g{\cdot}L^{-1}$). Z. serrata seedlings grown at $2.0g{\cdot}L^{-1}$ fertilization and B. costata seedlings grown at $0.5g{\cdot}L^{-1}$ fertilization showed the highest RCD, height, biomass and SQI. The RCD and height of U. parvifolia and T. amurensis seedlings showed no significant differences by fertilization treatments. Seedlings of two species at $0.5g{\cdot}L^{-1}$ fertilization showed the lowest SQI, however, SQI at 1.0 and $2.0g{\cdot}L^{-1}$ fertilization treatments were not significantly different. Based on these results, it is appeared that container seedlings of Z. serrata at minimum $2.0g{\cdot}L^{-1}$ fertilization, U. parvifolia and T. amurensis at $1.0g{\cdot}L^{-1}$ fertilization and B. costata at maximum $0.5g{\cdot}L^{-1}$ fertilization were optimal nutrient conditions. Practice of optimal fertilization rate will make us get better quality seedlings and reduction of production costs in the container nursery system as well as good field performances with higher survival rate after planting.

본 연구는 주요 활엽수 조림수종인 느티나무, 참느릅나무, 거제수나무 및 피나무를 대상으로 세 가지 시비 처리($0.5g{\cdot}L^{-1}$, $1.0g{\cdot}L^{-1}$, $2.0g{\cdot}L^{-1}$)에 따른 근원경, 간장, 물질생산량, 묘목품질지수 등 생장 특성을 조사 분석하여 시설양묘과정에서 실질적으로 적용 가능한 수종별 적정 시비기술을 구명하고자 수행하였다. 느티나무는 $2.0g{\cdot}L^{-1}$, 거제수나무는 $0.5g{\cdot}L^{-1}$ 시비처리구에서 가장 우수한 생장 및 묘목품질을 나타냈는데, 시비수준에 따른 두 수종간의 생장 특성이 반대의 경향을 보인 것이다. 또한, 시비처리에 따른 참느릅나무와 피나무의 근원경과 간장 생장은 유의적 차이가 없었다. 그러나 묘목품질지수는 두 수종 모두 $0.5g{\cdot}L^{-1}$ 시비처리구에서 가장 낮았으며, $1.0g{\cdot}L^{-1}$$2.0g{\cdot}L^{-1}$ 시비처리구 간 유의적 차이는 없었다. 따라서 묘목 품질과 함께 경제적, 환경적 측면을 고려했을 때 느티나무는 최소 $2.0g{\cdot}L^{-1}$, 참느릅나무와 피나무는 $1.0g{\cdot}L^{-1}$, 거제수나무는 최대 $0.5g{\cdot}L^{-1}$이 적정 시비 수준으로 판단된다. 수종별 적정 시비 수준(배액, 회수)의 적용으로 우량 묘목 생산 및 이와 연계된 조림성과 향상뿐만 아니라 환경오염 저감, 생산비용 절감 및 양묘 기간 단축 등 경제적 이점이 기대된다.

Keywords

References

  1. Aghai, M.M., Pinto, J.R., and Davis, A.S. 2014. Container volume and growing density influence western larch (Larix occidentalis Nutt.) seedling development during nursery culture and establishment. New Forests 45: 199-213. https://doi.org/10.1007/s11056-013-9402-8
  2. Aranda, I., Gil, L., and Pardos, J.A. 2002. Physiological responses of Fagus sylvatica L. seedlings under Pinus sylvestris L. and Quercus pyrenaica Will. Overstories. Forest Ecology and Management 162: 153-164. https://doi.org/10.1016/S0378-1127(01)00502-3
  3. Bayala, J., Dianda, M., Wilson, J., Ouedraogo, S.J., and Sanon, K. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38: 309-322. https://doi.org/10.1007/s11056-009-9149-4
  4. Broschat, T.K. 1995. Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods. Hortscience 30: 74-77.
  5. Bumgarner, M.L., Salifu, K.F., and Jacobs, D.F. 2008. Subirrigation of Quercus rubra seedlings: Nursery stock quality, media chemistry, and early field performance. Hortscience 43: 2179-2185.
  6. Burdett, A.N. 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research 20: 415-427. https://doi.org/10.1139/x90-059
  7. Chirino, E., Vilagrosa, A., Hernandez, E.I., Matos, A., and Vallejo, V.R. 2008. Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. Forest Ecology and Management 256: 779-785. https://doi.org/10.1016/j.foreco.2008.05.035
  8. Cho, M.S., Lee, S.W., Bae, J.H., and Park, G.S. 2011. Effect of different fertilization on physiological characteristics and growth performances of Eucalyptus pellita and Acacia mangium in a container nursery system. Journal of Bio-Environment Control 20(2): 123-133 (in Korean with English abstract).
  9. Cho, M.S., Lee, S.W., and Park, B.B. 2012. Effects of fertilization methods on the growth and physiological characteristics of Larix kaempferi seedlings in the container nursery system. Journal of Bio-Environment Control 21(1): 57-65 (in Korean with English abstract).
  10. Compton, J., Watrud, L.S., Porteus, L.A., and DeGrood, S. 2004. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management 196: 143-158. https://doi.org/10.1016/j.foreco.2004.03.017
  11. Deans, J.D., Mason, W.L., Cannell, M.G.R., Sharpe, A.L., and Sheppard, L.J. 1989. Growing regimes for bare-root stock of sitka spruce, douglas fir and scots pine. 1. Morphology at the end of the nursery phase. Forestry 62: 53-60.
  12. Dominguez-Lerena, S., Sierra, N.H., Manzano, I.C., Bueno, L.O., Rubira, J.L.P., and Mexal, J.G. 2006. Container characteristics influence Pinus pinea seedling development in the nursery and field. Forest Ecology and Management 221: 63-71. https://doi.org/10.1016/j.foreco.2005.08.031
  13. Dumroese, R.K., Sung, S.S., Pinto, J.R., Davis, AS., and Scott, D.A. 2013. Morphology, gas exchange, and chlorophyll content of longleaf pine seedlings in response to rooting volume, copper root pruning, and nitrogen supply in a container nursery. New Forests 344: 881-897.
  14. Etter, H.M. 1971. Nitrogen and phosphorus requirements during the early growth of white spruce seedlings. Canadian Journal of Plant Sciences 51: 61-63. https://doi.org/10.4141/cjps71-011
  15. Frey, S.D., Knorr, M., Parrent, J.L., and Simpson, R.T. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management 196: 159-171. https://doi.org/10.1016/j.foreco.2004.03.018
  16. Gilliam, C.H., Still, S.M., Moor, S., and Watson, M.E. 1980. Effects of three nitrogen levels on container-grown Acer rubrum. HortScience 15: 641-642.
  17. Grossnickle, S.C. 2005. Importance of root growth in overcoming planting stress. New Forests 30: 273-294. https://doi.org/10.1007/s11056-004-8303-2
  18. Grossnickle, S.C. 2012. Why seedlings survive: influence of plant attributes. New Forests 43: 711-738. https://doi.org/10.1007/s11056-012-9336-6
  19. Haase, D.L., Rose, R., and Trobaugh, J. 2006. Field performance of three stock sizes of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium. New Forests 31: 1-24. https://doi.org/10.1007/s11056-004-5396-6
  20. Han, Q. and Chiba, Y. 2009. Leaf photosynthetic responses and related nitrogen changes associated with crown reclosure after thinning in a young Chamaecyparis obtusa stand. Journal of Forest Research 14: 349-357. https://doi.org/10.1007/s10310-009-0146-4
  21. Hernandez, E.I., Vilagrosa, A., Luis, V.C., Llorca, M., Chirino, E., and Vallejo, V.R. 2009. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environmental and Experimental Botany 67: 269-276. https://doi.org/10.1016/j.envexpbot.2009.07.004
  22. Hughes, A.P. and Freeman, P.R. 1967. Growth analysis using frequent small harvests. Journal of Applied Ecology 4: 553-560. https://doi.org/10.2307/2401356
  23. Inagaki, M., Inagaki, Y., Kamo, K., and Titin, J. 2009. Fineroot production in response to nutrient application at three forest plantations in Sabah, Malaysia: higher nitrogen and phosphorus demand by Acacia mangium. Journal of Forest Research 14: 178-182. https://doi.org/10.1007/s10310-009-0113-0
  24. Ingestad, T. 1979. Mineral nutrient requirement of Pinus silvestris and Picea abies seedlings. Physiologia Plantarum 45: 373-380. https://doi.org/10.1111/j.1399-3054.1979.tb02599.x
  25. Ingestad, T. and Agren, G.I. 1992. Theories and methods on plant nutrition and growth. Phsiologia Plantarum 84: 177-184. https://doi.org/10.1111/j.1399-3054.1992.tb08781.x
  26. Johnson, F., Parterson, J., Leeder, G., Mansfield, C., Pinto, F., and Watson, S. 1996. Artificial regeneration of Ontario's forests: species and stock selection manual. Ontario Forest Research Institute. pp. 52.
  27. Juntunen, M.L., Hammar, T., and Rikala, R. 2003. Nitrogen and phosphorus leaching and uptake by container birch seedlings (Betula pendula Roth) grown in three different fertilizations. New Forests 25: 133-147. https://doi.org/10.1023/A:1022686402578
  28. Kim, J.J., Kwon, K.W., Kim, P.G., Yoon, T.S., Lee, K.J., Chung, Y.S., and Son, K.S. 2010. Characteristics of meteorological disasters in Korean nursery industry. Journal of Climate Research 5(1): 42-53 (in Korean with English abstract).
  29. KFS (Korea Forest Service). 2013. Actual results of afforestation in 2012. KFS. pp. 638 (in Korean).
  30. KFS (Korea Forest Service). 2014. The guidelines for seed and nursery practices. pp. 100 (in Korean).
  31. Kwon, K.W., Cho, M.S., Kim, G.N., Lee, S.W., and Jang, K.H. 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedling of Quercus acutissima growing at different fertilizing schemes. Journal of Korean Forest Society 98(3): 331-338 (in Korean with English abstract).
  32. Landis, T.D., Tinus, R.W., McDonald, S.E., and Barnett, J.P. 1989. Seedling nutrition and irrigation. The container tree nursery manual Vol. 4. USDA Forest Service. Agriculture Handbook. Washington. pp. 674.
  33. Lee, C.H., Shin, C.H., Kim, K.S., and Choi, M.S. 2006a. Effects of light intensity on photosynthesis and growth in seedling of Kalopanax pictus Nakai. Korean Journal of Medicinal Crop Science 14(4): 244-249 (in Korean with English abstract).
  34. Lee, Y.K., Lee, D.K., Woo, S.Y., Park, P.S., Jang, Y.H., and Abraham, E.R.G. 2006b. Effect of Acacia plantations on net photosynthesis, tree species composition, soil enzyme activities, and microclimate on Mt. Makiling. Photosynthetica 44: 299-308. https://doi.org/10.1007/s11099-006-0022-9
  35. Leiva, M.J. and Fernandez-Ales, R. 1998. Variability in seedling water status during drought within a Quercus Ilex subsp. ballota population, and its relation to seedling morphology. Forest Ecology and Management 111: 147-156. https://doi.org/10.1016/S0378-1127(98)00320-X
  36. Lloret, F., Casanovas, C., and Penuelas, J. 1999: Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Functional Ecology 13: 210-216. https://doi.org/10.1046/j.1365-2435.1999.00309.x
  37. Luis, W.C., Puertolas, J., Climent, J., Peters, J., Gonzalez-Rodriguez, A.M., Morales, D., and Jimenez, M.S. 2009. Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. European Journal of Forest Research 128: 221-229. https://doi.org/10.1007/s10342-009-0257-7
  38. Mackensen, J., Holscher, D., Klinge, R., and Folster, H. 1996. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. Forest Ecology and Management 86: 121-128. https://doi.org/10.1016/S0378-1127(96)03790-5
  39. Oliet, J., Planelles, R., Artero, F., Valverde, R., Jacobs, D., and Segura, M.L. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forests 37: 313-331. https://doi.org/10.1007/s11056-008-9126-3
  40. Park, B.B., Byun, J.K., Kim, W.S., and Sung, J.H. 2010. Growth and tissue nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings fertilized with nitrogen, phosphorus, and potassium at a nursery culture. Journal of Korean Forest Society 95(1): 85-95 (in Korean with English abstract).
  41. Park, B.B., Byun, J.K., Sung, J.H., and Cho, M.S. 2013. Study of optimal fertilization with vector analysis in hardwood and softwood seedlings. Journal of Agriculture and Life Science 47(5): 95-107 (in Korean with English abstract).
  42. Park, B.B., Cho, M.S., Lee, S.W., Yanai, R.D., and Lee, D.K. 2012. Minimizing nutrient leaching and improving nutrient use efficiency of Liriodendron tulipifera and Larix leptolepis in a container nursery system. New Forests 43: 57-68. https://doi.org/10.1007/s11056-011-9266-8
  43. Phillion, B.J. and Libby, M. 1984. Growth of potted black spruce seedlings at a range of fertilizer levels. The Plant Propagator 30: 10-11.
  44. Reddell, P., Webb, M.J., Poa, D., and Aihuna, D. 1999. Incorporation of slow-release fertilisers into nursery media. New Forests 18: 277-287. https://doi.org/10.1023/A:1006693308681
  45. Richards, N.A., Leaf, A.L., and Bickelhaupt, D.H. 1973. Growth and nutrient uptake of coniferous seedlings: comparison among 10 species at various seedbed densities. Plant and Soil 38: 125-143. https://doi.org/10.1007/BF00011222
  46. Salifu, K.F. and Jacobs, D.F. 2006. Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Annals of Forest Science 63: 231-237. https://doi.org/10.1051/forest:2006001
  47. SAS Institute Inc. 2000. SAS/STAT TM guide for personal computer. Version 8 edition. SAS Institute Inc., N.C. pp. 1026.
  48. Sestak, Z., Catsk, J., and Jarvis, P.G. 1971. Plant photosynthetic production manual of methods. The hague. Hertogenbosch. pp. 818.
  49. Sung, H.I., Song, K.S., Cha, Y.G., and Kim, J.J. 2011. Characteristics of growth and seedling quality of 1-year-old container seedlings of Quercus myrsinaefolia by shading and fertilizing treatment. Journal of Korean Forest Society 100(4): 598-608 (in Korean with English abstract).
  50. Teng, Y. and Timmer, V.R. 1995. Rhizosphere phosphorus depletion induced by heavy nitrogen fertilization in forest nursery soils. Soil Science Society of America Journal 59: 227-233. https://doi.org/10.2136/sssaj1995.03615995005900010035x
  51. Thirukkumaran, C.M. and Parkinson, D. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. Forest Ecology and Management 159: 187-201. https://doi.org/10.1016/S0378-1127(01)00432-7
  52. Timmer, V.R. and Miller, B.D. 1991. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings. New Forests 5: 335-348. https://doi.org/10.1007/BF00118861
  53. Timmer, V.R. and Armstrong, G. 1987. Diagnosing nutritional status of containerized tree seedlings: comparative plant analyses. Soil Science Society of America Journal 51: 1082-1086. https://doi.org/10.2136/sssaj1987.03615995005100040048x
  54. Trubat, R., Cortina, J., and Vilagrosa, A. 2008. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. Journal of Arid Environments 72: 879-890. https://doi.org/10.1016/j.jaridenv.2007.11.005
  55. Tsakaldimi1, M., Zagas, T., Tsitsoni, T., and Ganatsas, P. 2005. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant and Soil 278: 85-93. https://doi.org/10.1007/s11104-005-2580-1
  56. van den Driessche, R. 1988. Nursery growth of conifer seedlings using fertilizers of different solubilities and application time, and their forest growth. Canadian Journal of Forest Research 18: 172-180. https://doi.org/10.1139/x88-027
  57. Way, D.A., Seegobin, S.D., and Sage, R.F. 2007. The effect of carbon and nutrient loading during nursery culture on the growth of black spruce seedlings: a six-year field study. New Forests 34: 307-312. https://doi.org/10.1007/s11056-007-9053-8
  58. Wilson, E.D., Vitols, K.C., and Park, A. 2007. Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario, Canada. New Forests 34: 163-176. https://doi.org/10.1007/s11056-007-9046-7

Cited by

  1. Effect of Organic Waste Application on Soil Chemical Properties and Organisms under Zelkova serrata Cultivation vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.471
  2. 조림지 시비 처리에 따른 리기다소나무 벌채지 내 식재 6년 후 느티나무 조림지 토양 및 조림목 생장 특성 vol.108, pp.1, 2019, https://doi.org/10.14578/jkfs.2019.108.1.29
  3. 식재밀도가 느티나무 조림목의 초기 생육에 미치는 영향 vol.109, pp.3, 2015, https://doi.org/10.14578/jkfs.2020.109.3.281