References
- Abrahamson, N.A., Somerville, P.G. and Cornell, C.A. (1990), "Uncertainty in numerical strong motion predictions", Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, Palm Springs, California.
- Atkinson, G.M. (1993), "Earthquake source spectra in Eastern North America", Bull. Seismol. Soc. Am., 83(6), 1778-1798.
- Atkinson, G.M. and Boore, D.M. (1998), "Evaluation of models for earth-quake source spectra in eastern North America", Bull. Seismol. Soc. Am., 88(4), 917-934.
- Atkinson, G.M. and Silva, W. (1997), "An empirical study of earthquake source spectra for California earthquakes", Bull. Seismol. Soc. Am., 87(1), 97-113.
- Atkinson, G.M. and Silva, W. (2000), "Stochastic modeling of California ground motions", Bull. Seismol. Soc. Am., 90(2), 255-274. https://doi.org/10.1785/0119990064
- Beresnev, I.A. and Atkinson, G.M. (1998), "Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earth-quake, I. Validation on rock sites", Bull. Seismol. Soc. Am., 88(6), 1392-1401.
- Beresnev, I. and Atkinson, G. (1999), "Generic finite-fault model for ground motion prediction in eastern North America", Bull. Seismol. Soc. Am., 89(3), 608-625.
- Boatwright, J. and Choy, G.L. (1992), "Acceleration source spectra anticipated for large earthquakes in northeastern North America", Bull. Seismol. Soc. Am., 82(2), 660-682.
- Boore, D.M. (1983), "Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra", Bull. Seismol. Soc. Am., 73(6A), 1865-1894.
- Boore, D.M. (2003), "Prediction of ground motion using the stochastic method", Pure Appl. Geophys., 160, 635-676. https://doi.org/10.1007/PL00012553
- Boore, D.M. (2009), "Comparing stochastic point-source and finite-source ground-motion simulations", SMSIM and EXSIM, Bull. Seismol. Soc. Am., 99(6), 3202-3216. https://doi.org/10.1785/0120090056
- Boore, D.M. and Atkinson, G.M. (1987), "Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America", Bull. Seismol. Soc. Am., 77(2), 440-467.
- Boore, D.M. and Joyner, W.B. (1984), "A note on the use of random vibration theory to predict peak amplitudes of transient signals", Bull. Seism. Soc. Am., 74(5), 2035-2039.
- Boore, D.M. and Joyner, W.B. (1997), "Site amplification for generic rock sites", Bull. Seismol. Soc. Am., 87(2), 327-341.
- Boore, D.M. and Thompson, E.M. (2012), "Empirical improvements for estimating earthquake response spectra with random-vibration theory", Bull. Seismol. Soc. Am., 102(2), 761-772. https://doi.org/10.1785/0120110244
- Borzi, B., Calvi, G.M. ,Elnashai, A.S., Faccioli, E. and Bommer, J.J. (2011),"Inelastic spectra for displacement-based seismic design", Soil Dyn. Earthq. Eng., 21(1), 47-61. https://doi.org/10.1016/S0267-7261(00)00075-0
- Bozorgnia, Y., Hachem, M.M. and Campbell, K.W. (2010), "Ground motion prediction equation ("Attenuation Relationship") for inelastic response spectra", Earthq. Spectra, 26(1), 1-23. https://doi.org/10.1193/1.3281182
- Brune, J.N. (1970), "Tectonic stress and the spectra of seismic shear waves from earthquakes", J. Geophys. Res., 75(26), 4997-5009. https://doi.org/10.1029/JB075i026p04997
- Brune, J. (1971), "Correction: Tectonic stress and the spectra of seismic shear waves", J. Geophys. Res., 76, 5002. https://doi.org/10.1029/JB076i020p05002
- Cai, G.Q. and Lin, Y.K. (1988), "A new approximate solution technique for randomly excited nonlinear oscillators", Int. J. Nonlin. Mech., 23(5), 409-420. https://doi.org/10.1016/0020-7462(88)90038-8
- Cai, G.Q. and Lin, Y.K. (1990), "On randomly excited hysteretic structures", J. Appl. Mech., 57(2), 442-448. https://doi.org/10.1115/1.2892009
- Caughey, T.K. (1971), Nonlinear theory of random vibrations: Advances in applied mechanics, New York, Academic Press.
- Chang, S.W., Bray, J.D. and Seed, R.B. (1996), "Engineering implications of ground motions from the Northridge Earthquake", Bull. Seismol. Soc. Am., 86(1B), 270-288.
- Hanks, T.C. and McGuire, R.K. (1981), "The character of high-frequency strong ground motion", Bull. Seismol. Soc. Am., 71(6), 2071-2095.
- Hudson, D.E. (1962), "Some problems in the application of spectrum techniques to strong-motion earthquake analysis", Bull. Seismol. Soc. Am., 52(2), 417-430.
- Kanai, K. (1957), "Semiempirical formula for the seismic characteristics of the ground motion", Bull. Earthq. Res. Inst., University of Tokyo, 35(2), 308-325.
- Kanamori, H. (1977), "The energy release in great earthquakes", J. Geophys. Res., 82(B20), 2981-2987. https://doi.org/10.1029/JB082i020p02981
- Koliopulos, P.K. and Nichol, E.A. (1994), "Comparative performance of equivalent linearization techniques for inelastic seismic design", Eng. Struct., 16(1), 5-10. https://doi.org/10.1016/0141-0296(94)90099-X
- Kuwamura, H., Kirinot, Y. and Akiyama, H. (1994), "Prediction of earthquake energy input from smoothed Fourier amplitude spectrum", Earthq. Eng. Struct. Dyn., 23(10), 1125-1137. https://doi.org/10.1002/eqe.4290231007
- Lee, V.W. and Trifunac, M.D. (2010), "Should average shear wave velocity in the top 30 m of soil be the only local site parameter used to describe seismic amplification?", Soil Dyn. Earthq. Eng., 30(11), 1250-1258. https://doi.org/10.1016/j.soildyn.2010.05.007
- Lin, Y.K. and Cai, G.Q. (2004), Probabilistic Structural Dynamics: Advanced Theory and Applications, McGraw-Hill, New York.
- Liu, L. and Pezeshk, S. (1999), "An improvement on the estimation of pseudoresponse spectral velocity using RVT method", Bull. Seismol. Soc. Am., 89(5), 1384-1389.
- Lutes, L.D. (1970), "Approximate techniques for treating random vibrating of hysteretic systems", J. Acoustic. Soc. Am., 48(1), 299-306. https://doi.org/10.1121/1.1912128
- Miranda, E. (2000), "Inelastic displacement ratios for structures on firm sites", J. Struct. Eng., 126(10), 1150-1159. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1150)
- Moustafa, A., Ueno, K. and Takewak, I. (2010), "Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves", Earthq. Struct., 1(2), 147-162. https://doi.org/10.12989/eas.2010.1.2.147
- Motazedian, D. and Atkinson, G.M. (2005), "Stochastic finite-fault modeling based on a dynamic corner frequency", Bull. Seismol. Soc. Am., 95(3), 995-1010. https://doi.org/10.1785/0120030207
- Raoof, M., Herrmann, R. and Malagnini, L. (1999), "Attenuation and excitation of three component ground motion in southern California", Bull. Seism. Soc. Am., 89(4), 888-902.
- Roberts, J.B. and Spanos, P.D. (1990), Random Vibration and Statistical Linearization, Wiley, Chichester.
- Rudinger, F. and Krenk, S. (2003), "Spectral density of oscillator with bilinear stiffness and white noise excitation", Prob. Eng. Mech., 18(3), 215-222. https://doi.org/10.1016/S0266-8920(03)00015-8
- Ruiz-Garcia, J. and Miranda, E. (2003), "Inelastic displacement ratios for evaluation of existing structures", Earthq. Eng. Struct. Dyn., 32(8), 1237-1258. https://doi.org/10.1002/eqe.271
- Suzuki, Y. and Minai, R. (1988), "Application of stochastic differential equations to seismic reliability analysis of hysteretic structures", Prob. Eng. Mech., 3, 43-52. https://doi.org/10.1016/0266-8920(88)90007-0
- Tajimi, H. (1960), "A statistical method of determining the maximum response of a building structure during an earthquake", 2nd World Cpnference on Earthquake Engineering, Tokyo.
- Takewaki, I. (2001), "Resonance and criticality measure of ground motions via probabilistic critical excitation method", Soil Dyn. Earthq. Eng., 21(8), 645-659. https://doi.org/10.1016/S0267-7261(01)00046-X
- Takewaki, I. (2002a), "Seismic critical excitation method for robust design: a review", J. Struct. Eng., 128(5), 665-672. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(665)
- Takewaki, I. (2002b), "Critical excitation for elastic-plastic structures via statistical equivalent linearization", Prob. Eng. Mech., 17(1), 73-84. https://doi.org/10.1016/S0266-8920(01)00030-3
- Takewaki, I. (2005), "Resonance and criticality measure of ground motions via probabilistic critical excitation method", Soil Dyn. Earthq. Eng., 21(8), 645-659. https://doi.org/10.1016/S0267-7261(01)00046-X
- Takewaki, I. (2006), "Probabilistic critical excitation method for earthquake energy input rate", J. Eng. Mech., 132(9), 990-1000. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(990)
- Toro, G.R., Abrahamson, N.A. and Schneider, J.F. (1997), "Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties", Seismol. Res. Lett., 68(1), 41-57. https://doi.org/10.1785/gssrl.68.1.41
- Yamamoto, K., Fujita K. and Takewaki I. (2011), "Instantaneous earthquake input energy and sensitivity in base-isolated building", Struct. Des. Tall Spec. Build., 20(6), 631-648. https://doi.org/10.1002/tal.539
- Yazdani, A. and Eftekhari, S.N. (2012), "Variance decomposition of the seismic response of structures", Scientia Iranica, 19(1), 84-90. https://doi.org/10.1016/j.scient.2011.12.003
- Yazdani, A. and Takada, T. (2011), "Probabilistic study of the effect of the influence of ground motion variables on the response spectra", Struct. Eng. Mech., 39, 877-893. https://doi.org/10.12989/sem.2011.39.6.877
Cited by
- Seismic structural demands and inelastic deformation ratios: a theoretical approach vol.12, pp.4, 2015, https://doi.org/10.12989/eas.2017.12.4.397
- Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models vol.13, pp.1, 2015, https://doi.org/10.12989/eas.2017.13.1.059
- Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads vol.66, pp.1, 2018, https://doi.org/10.12989/sem.2018.66.1.075