Development of Medical Image Processing Algorithm for Clinical Decision Support System Applicable to Patients with Cardiopulmonary Function

심폐기능 재활환자용 임상의사결정지원시스템을 위한 의료영상 처리 기술 개발

  • Received : 2015.02.05
  • Accepted : 2015.02.28
  • Published : 2015.02.28

Abstract

Chest X-ray images is the most common and widely used in clinical findings for a wide range of anatomical information about the prognosis of the disease in patients with cardiopulmonary rehabilitation. Many analysis algorithm was developed by a number of studies regarding the region segmentation and image analysis, there are specific differences due to the complexity and diversity of the image. In this paper, a diagnosis support system of the chest X-ray image based on image processing and analysis methods to detect the cardiopulmonary disease. The threshold value and morphological method was applied to segment the pulmonary region in a chest X-ray image. Anatomical measurements and texture analysis was performed on the segmented regions. The effectiveness of the proposed method is shown through experiments and comparison with diagnosis results by clinical experts to show that the proposed method can be used for decision support system.

심폐기능 재활환자에 있어서 흉부 X선 화상은 임상적 소견 중 가장 일반적이고 널리 사용되는 의학정보로서 질환의 예후에 대한 다양한 해부학적 정보를 제공한다. 흉부 X선 영상에서의 영역분할 및 영상해석에 관한 많은 연구에 의해 다양한 해석 알고리즘이 개발되어 왔으나, 영상의 복잡성과 다양성에 의한 해석 차이가 존재한다. 본 논문에서는 X선 영상에서의 질환 여부를 진단하기 위해 영상처리 및 분석방법에 기반한 흉부 X선 영상의 진단지원시스템이 제안되었다. 흉부 X선 영상에서 폐 영역을 검출하기 위하여 임계값 및 형태학적 방법이 적용되었으며, 형태학적 측정 및 질감 분석은 분할된 영역에서 수행되었다. 실제 흉부 X선 영상에 적용한 실험결과와 임상 전문가의 진단 결과를 비교하여 제시하였으며, 제안한 방법이 충분히 의사결정지원시스템에 활용될 수 있음을 보였다.

Keywords

References

  1. 장재훈 외, "스마트폰 영상을 이용한 슬관절 각도 및 활보장에 대한 보행 분석," 재활복지공학회논문지, 제7권, 제2호, pp. 139-144, 2013.
  2. Ginneken B, Haar Romeny BM, and Viergever MA., Computer-Aided Diagnosis in Chest Radiography: A Survey, IEEE Trans. Medical Imaging, 20(12), 2001, 1228-1241. https://doi.org/10.1109/42.974918
  3. H. Yoshida, Local Contralateral Subtraction Based on Simultaneous Segmentation and Registration Method for Computerized Detection of Pulmonary Nodules, Proc. SPIE, 4322, 2001, 426-430.
  4. Q. Li, S. Katsuragawa, K. Doi, Improved Contralateral Subtraction Images by Use of Elastic Matching Technique, Med. Phys., 27(8), 2000, 1934-1942. https://doi.org/10.1118/1.1287112
  5. A.M.R. Schilham, B.V. Ginneken, M. Loog, A Computer-Aided Diagnosis System for Detection of Lung Nodules in Chest Radiographs with an Evaluation on a Public Database, Medical Image Analysis, 10, 2006, 247-258. https://doi.org/10.1016/j.media.2005.09.003
  6. S. Armato, M. Giger, and H. MacMahon, Computerized Delineation and Analysis of Costophrenic Angles in Digital Chest Radiographs, Academic Radiol., 5, 1998, 329-335. https://doi.org/10.1016/S1076-6332(98)80151-7
  7. M. Carreira, D. Cabello, M. Penedo, & A. Mosquera, Computer-Aided Diagnoses: Automatic Detection of Lung Nodules, Med. Phys., 25(10), 1998, 1998-2006. https://doi.org/10.1118/1.598388
  8. G. Coppini, S. Diciotti, M. Falchini, N. Villari, G. Valli, Neural Networks for Computer-Aided Diagnosis: Detection of Lung Nodules in Chest Radiograms, IEEE Trans. Information Tech. in Biomedicine, 7, 2003, 344-357. https://doi.org/10.1109/TITB.2003.821313
  9. S. Klim, S. Mortensen, B. Bodvarsson, L. Hyldstrup, H.H. Thodberg, More Active Shape Model, Image and Vision Computing, NZ, 2003, 396-401.
  10. K.L. Wu, & M.S. Yang, Mean Shift-Based Clustering, Pattern Recognition, 40(11), 2007, 3035-3052. https://doi.org/10.1016/j.patcog.2007.02.006
  11. S.T. Seo, I.K. Lee, H.C. Jeong, S.H. Kwon, Gaussian Kernel-Based Multi-Histogram Equalization, IEICE Trans. Information and Systems, E39-D(5), 2010, 1313-1316.
  12. L. Cao, Z.K. Shi, & E.K.W. Cheng, Fast Automatic Multilevel Thresholding Method, Electronics Letters, 38(16), 2002, 868-870. https://doi.org/10.1049/el:20020594
  13. R.C. Gonzalez, & R.E. Woods, Digital Image Processing(2nd Ed., NJ, Prentice Hall, 2002).
  14. C.R. Giardina, & E.R. Dougherty, Morphological Methods in image and Signal Processing(NJ, Prentice Hall,1988).
  15. R. Susomboon, D. Raicu, J. Furst, & T.B. Johnson, A Co-occurrence Texture Semi-Invariance to Direction. Distance and Patient Size, Proc. SPIE Medical Imaging, 6914(2), 2008, 69141Y-69141Y-6.
  16. M. Petrou, P.G. Sevilla, Image Processing: Dealing with Texture(Wiley, 2006).
  17. R. Susomboon, D.S. Raicu, J. Furst, Pixel-based texture classification of tissues in computed tomography, CTI Research Symp, 2006.