DOI QR코드

DOI QR Code

Rank-based Formation for Multiple Robots in a Local Coordinate System

지역 좌표에서 랭크기반의 다개체 로봇 포메이션 제어

  • Received : 2014.09.15
  • Accepted : 2015.02.17
  • Published : 2015.02.25

Abstract

This paper presents a rank-based formation for multiple agents based on potential functions, where the proposed method uses the relative position of two neighboring agents. The conventional formation scheme of multiple systems requires communication between agents and a central computer to get the positions of all multiple agents. In the study, differently from previous studies, the formation scheme uses the relative position of two neighboring agents in a local coordinate system. In addition, it introduces a singular agent association that considers only the relative position between an agent and its neighboring agents, instead of multiple associations among all information about all agents. Furthermore, the proposed framework explores the benefits of different formation types. Extensive simulation results show that the proposed approach verifies the viability and effectiveness of the proposed formation.

본 논문은 다개체 로봇을 위한 랭크 기반의 포메이션을 다룬다. 여기서 제안되는 방법은 이웃한 두 대 로봇의 지역 위치를 이용한다. 전통적인 다개체 로봇의 포메이션을 위한 연구는 모든 로봇의 위치를 파악하기 위해 로봇과 중앙 컴퓨터사이의 통신을 필요로 한다. 그리고 전역좌표에서 모든 로봇의 위치를 참조하여 포메이션 형성 및 로봇 경로가 만들어 진다. 기존의 연구들과는 다르게 제안된 포메이션 형성 방법은 지역좌표에서 이웃한 두 대의 로봇 위치를 사용 한다. 따라서 제안된 방법은 여러 모양의 포메이션을 형성할 때 모든 로봇의 협력 관계는 필요하지 않고 주변의 이웃 로봇 위치를 개별적으로 이용한다. 시뮬레이션 결과는 제안된 방법이 효과적으로 포메이션을 형성할 수 있음을 보여준다.

Keywords

References

  1. D. H. Kim, H. O. Wang, and E. S. Kim, "Cascade Observer for Nonlinear Systems and Application to Nonlinear Output Feedback Control," JSME International Journal Series C, vol. 49, no. 2, pp. 463-472, 2006. https://doi.org/10.1299/jsmec.49.463
  2. T. Balch and R.C. Arkin, "Behavior-based formation control for multirobot teams," IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926-939, 1998. https://doi.org/10.1109/70.736776
  3. K. H. Tan and M. A. Lewis, "Virtual structures for high-precision cooperative mobile robotic control," International Conference on Intelligent Robots and Systems '96, vol. 1, pp. 132-139, 1996.
  4. Y. Wang, W. Yan, and W. Yan, "A leader-follower formation control strategy for AUVs based on line-of-sight guidance," International Conference on Mechatronics and Automation, pp. 4863-4867, 2009.
  5. P. Vela, A. Betser, J. Malcolm, and A. Tannenbaum, "Vision-Based Range Regulation of a Leader-Follower Formation," IEEE Transactions on Control Systems Technology, vol 17. no. 2, pp. 442-448, 2009. https://doi.org/10.1109/TCST.2008.2000979
  6. M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, "Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots," IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp 3944-3953, 2008. https://doi.org/10.1109/TIE.2008.2002717
  7. S. M. Cristescu, C. M. Ionescu, B. Wyns, R. D. Keyser, and I. Nascu, "Leader-follower string formation using cascade control for mobile robots," 2012 20th Mediterranean Conference on Control & Automation (MED) , pp. 1092-1098, 2012.
  8. F. Bravo, D. Patino, K. Melo, and C. Parra, "Switching control and modeling of mobile robots formation," Robotics Symposium, 2011 IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications (LARC), pp. 1-6, 2011.
  9. G. W. Gamage, G. K. I. Mann, R. G. Gosine, "Discrete event systems based formation control framework to coordinate multiple nonholonomic mobile robots," International Conference on Intelligent Robots and Systems, pp. 4831-4836, 2009.
  10. X. B. Chen and W. Xu, "Formation Control of Multiple Mobile Robots Based on Orientation Bias," IEEE Conference on Robotics, Automation and Mechatronics, pp. 683-687, 2008.
  11. K.H. Kowdiki, R.K. Barai, and S. Bhattacharya, "Leader-follower formation control using artificial potential functions: A kinematic approach," International Conference on Advances in Engineering, Science and Management, pp. 500-505, 2012.
  12. J. Shao, G. Xie, J. Yu, and L. Wang, "Leader-Following Formation Control of Multiple Mobile Robots," Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, pp.808-813, 2005.
  13. G. Ye, H. O. Wang, and K. Tanaka, "Coordinated motion control of swarms with dynamic connectivity in potential flows," In Proceedings of the 16th International Federation of Automatic Control World Congress, vol. 16, pp. 1562-1562, 2005.
  14. G. Ye, H. O. Wang, K. Tanaka, and Z. Guan, "Managing group behaviors in swarm systems by associations," In Proceedings of the 25th American Control Conference, pp. 3537-3544, 2006.
  15. H. Guo, Y. Meng, and Y. Jin. "A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network," Journal of Bio Systems, vol. 3, pp. 193-203, 2009.
  16. S. S. Ge, C. Fua, and W. Liew, "Swarm formations using the general formation potential function," 2004 IEEE Conference on Robotics, Automation and Mechatronics, vol. 2, pp. 655-660, 2004.
  17. M. Wang, Z. Jia, H. Ma, and M. Fu, "Three-robot minimum-time optimal line formation," 2011 9th IEEE International Conference on Control and Automation, pp. 1326-1331, 2011.
  18. H. Jung and D. H. Kim, "Formation Algorithm with Local Minimum Escape for Unicycle Robots," Journal of Institute of Control, Robotics and Systems, vol. 19, no. 4, pp. 349-356, 2013. https://doi.org/10.5302/J.ICROS.2013.12.1844
  19. D. H. Kim, "Self-organization of unicycle swarm robots based on a modified particle swarm framework," International Journal of Control, Automat ion and Systems, vol. 8, no. 3, pp. 622-629, 2010. https://doi.org/10.1007/s12555-010-0315-4

Cited by

  1. T-S Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems in Discrete Time vol.26, pp.4, 2016, https://doi.org/10.5391/JKIIS.2016.26.4.308