DOI QR코드

DOI QR Code

연료 다변화에 따른 용융 탄산염 연료전지 시스템 운전 특성

Operating Characteristics of MCFC System on the Diversification of Fuel

  • 투고 : 2015.03.23
  • 심사 : 2015.04.30
  • 발행 : 2015.04.30

초록

The fuel cells have been investigated in the applications of marine as the high efficient and eco-friendly power generating systems. In this study, modeling of IR Type molten carbonate fuel cell (Internal Reforming Type molten carbonate fuel cell) has been developed to analyze the feasibility of thermal energy utilization. The model is developed under Aspen plus and used for the study of system performances over regarding fuel types. The simulation results show that the efficiency of MCFC system based on NG fuel is the highest. Also, it is also verified that the steam reforming is suitable as pre-reforming for diesel fuel.

키워드

참고문헌

  1. B. Bozzini, S. Maci, I. Sgura, R. L. Presti, and E. Simonetti, "Numerical modelling of MCFC cathode degradation in terms of morphological variations", Hydrogen energy, Vol. 36, 2011, pp. 10403-10413. https://doi.org/10.1016/j.ijhydene.2010.07.110
  2. B. J. Kim, D. H. Kim, J. H. Lee, S. W. Kang, and H. C. Lim, "The operation results of a 250KW molten carbonate fuel cell system", Renewable Energy, Vol. 42, 2012, pp. 145-151. https://doi.org/10.1016/j.renene.2011.08.044
  3. B. S. Kang, K. S. Ahn, J. H. Koh, and H. C. Lim, "Process modeling and fuel utilization analyses of a 7kW MCFC system using ASPEN PLUS", Journal of energy engg, Vol, 8, No. 1, 1999, pp. 85-94.
  4. J. Milewski, G. Discepoli, and U. Desideri, "Modeling the performance of MCFC for various fuel and oxidant compositions", Hydrogen energy, Vol, 39, 2014, pp. 11713-11721. https://doi.org/10.1016/j.ijhydene.2014.05.151
  5. D. Marra, and B. Bosio, "Process analysis of 1 MW MCFC plant", Hydrogen energy, Vol, 32, 2007, pp. 809-818. https://doi.org/10.1016/j.ijhydene.2006.11.016
  6. G. Falcucci, E. Jannelli, M. Minutillo, S. Ubertini, J. Han, S. P. Yoon, and S. W. Nam, "Integrated numerical and experimental study of a MCFCplasma gasifier energy system", Applied Energy, Vol 97, 2012, pp. 734-742. https://doi.org/10.1016/j.apenergy.2012.01.060
  7. EG & G Technical Service, Fuel Cell handbook, US Department of Energy, 7th Edition, 2004, pp.6.15-6.34.
  8. T. G. Ghang, S. M. Lee, K. Y. Ahn, and Y. Kim, "An experimental study on the reaction characteristics of a coupled reactor with a catalytic combustor and a steam reformer for SOFC systems", Hydrogen energy, Vol, 37, 2012, pp. 3234-3241. https://doi.org/10.1016/j.ijhydene.2011.11.076
  9. S. Ahmed, and M. Krumpelt, "Hydrogen from hydrocarbon fuels for fuel cells", Hydrogen energy, Vol, 26, 2001, pp. 291-301. https://doi.org/10.1016/S0360-3199(00)00097-5
  10. J. Boon, and E. V. Dijk, "Adiabatic Diesel Pre-Reforming", Energy Research Centre of the Netherlands (ECN), 2008.
  11. S. H. D. Lee, D. V. Applegate, S. Ahmed, S. G. Calderone, and L. T. Harvey, "Hydrogen from natural gas:part I-autothermal fuel processor", Hydorogen energy, Vol, 30, 2005, pp. 829-824. https://doi.org/10.1016/j.ijhydene.2004.09.010
  12. T. G. Gang, S. S. Yu, Y. M. Kim, and G. Y. Ahn, "Experimental study of steam reforming assisted by catalytic combustion in concentric annular reactor", Trans of the KSME(B), Vol. 34, No. 4, 2010, pp. 375-381.
  13. A. H. Ghezel, J. Walzak, D. Pater, S. Jolly, M. Lukas, and A. Adriani, "Ultra high efficiency direct fuel cell systems for premium power generation", The electrochemical society, Vol. 17, 2009, pp. 629-635.
  14. http://www.kogas.or.kr
  15. Development of predictive models for diesel-based fuel processors, 2003, NETL onsite Merit Review meeting. http://www.eere.energy.gov/hydrogenfuelcells.