References
- G. A. Anastassiou, Fractional Differentiation Inequalities, Springer Publishing Company, New York, 2009.
- G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, 2011.
- G. A. Anastassiou, Fractional representation formulae and right fractional inequalities, Math. Comput. Modelling 54 (2011), no. 11-12, 3098-3115. https://doi.org/10.1016/j.mcm.2011.07.040
- A. Atangana and N. Bildik, The use of fractional order derivative to predict the groundwater flow, Math. Probl. Eng. 2013 (2013), Article ID 543026, 9 pages.
- A. Atangana and A. Kilicman, A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities, Math. Probl. Eng. 2014(2014), Article ID 531984, 7 pages.
- A. Atangana and A. Secer, A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal. 2013 (2013), Article ID 279681, 8 pages.
- D. Baleanu, S. D. Purohit, and P. Agarwal, On fractional integral inequalities involving hypergeometric operators, Chin. J. Math. 2014 (2014), Article ID 609476, 5 pages.
- D. Baleanu, S. D. Purohit, and F. Ucar, On Gruss type integral inequality involving the Saigo's fractional integral operators, J. Comput. Anal. Appl. 19 (2015), no. 3, 480-489.
- P. Cerone and S. S. Dragomir, New upper and lower bounds for the Chebyshev functional, J. Inequal. Pure App. Math. 3 (2002), no. 2, Article 77, 13 pages.
- P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.
- J. Choi and P. Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abstr. Appl. Anal. 2014 (2014), Article ID 579260, 11 pages.
- J. Choi and P. Agarwal, Certain fractional integral inequalities involving hypergeometric operators, East Asian Math. J. 30 (2014), 283-291. https://doi.org/10.7858/eamj.2014.018
- J. Choi and P. Agarwal, Certain new pathway type fractional integral inequalities, Honam Math. J. 36(2014), no. 2, 455-465. https://doi.org/10.5831/HMJ.2014.36.2.455
- J. Choi and P. Agarwal, Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions, Abstr. Appl. Anal. 2014 (2014), Article ID 735946, 7 pages.
- L. Curiel and L. Galue, A generalization of the integral operators involving the Gauss' hypergeometric function, Rev. Tech. Ingr. Unlv. Zulla 19 (1996), no. 1, 17-22.
-
Z. Dahmani and A. Benzidane, New weighted Gruss type inequalities via (
${\alpha},\;{\beta}$ ) fractional q-integral inequalities, IJIAS 1 (2012), no. 1, 76-83. - Z. Dahmani, L. Tabharit, and S. Taf, New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (2010), no. 2, 93-99.
- A. Debbouche, D. Baleanu, and R. P. Agarwal, Nonlocal nonlinear integrodifferential equations of fractional orders, Bound. Value Probl. 2012 (2012), 78, 10 pages.
- Z. Denton and A. S. Vatsala, Monotonic iterative technique for finite system of nonlinear Riemann-Liouville fractional differential equations, Opusc. Math. 31 (2011), no. 3, 327-339. https://doi.org/10.7494/OpMath.2011.31.3.327
- S. S. Dragomir, A generalization of Gruss's inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999), no. 1, 74-82. https://doi.org/10.1006/jmaa.1999.6452
- S. S. Dragomir, A Gruss type inequality for sequences of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math. 1 (2000), no. 2, Article 12, 11 pages.
- S. S. Dragomir, Some integral inequalities of Gruss type, Indian J. Pure Appl. Math. 31 (2000), no. 4, 397-415.
- S. S. Dragomir, Operator Inequalities of the Jensen, Cebysev and Gruss Type, Springer Briefs in Mathematics, Springer, New York, 2012.
- S. S. Dragomir S. S. Dragomir and S. Wang, An inequality of Ostrowski-Gruss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl. 13 (1997), no. 11, 15-20.
- H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004), no. 2-3, 281-300. https://doi.org/10.1016/S0898-1221(04)90025-9
- B. Gavrea, Improvement of some inequalities of Chebysev-Gruss type, Comput. Math. Appl. 64 (2012), no. 5, 2003-2010. https://doi.org/10.1016/j.camwa.2012.03.101
-
D. Gruss, Uber das maximum des absoluten Betrages von
${\frac{1}{b-a}}{\int_{a}^{b}}f(x)g(x)dx-{\frac{1}{(b-a)^2}}{\int_{a}^{b}}f(x)dx{\int_{a}^{b}}g(x)dx$ , Math. Z. 39 (1935), no. 1, 215-226. https://doi.org/10.1007/BF01201355 - S. L. Kalla and A. Rao, On Gruss type inequality for a hypergeometric fractional integrals, Matematiche 66 (2011), no. 1, 57-64.
- G. Kapoor, On some discrete Gruss type inequalities, Inter. J. Math. Sci. Appl. 2 (2012), no. 2, 729-734.
- V. Kiryakova, Generalized Fractional Calculus and Applications, (Pitman Res. Notes Math. Ser. 301), Longman Scientific & Technical, Harlow, 1994.
- V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11 (2007), no. 3-4, 395-402.
- Z. Liu, Some Ostrowski-Gruss type inequalities and applications, Comput. Math. Appl. 53 (2007), no. 1, 73-79. https://doi.org/10.1016/j.camwa.2006.12.021
- Y. Liu, J. J. Nieto, and S. Otero-Zarraquinos, Existence results for a coupled system of nonlinear singular fractional differential equations with impulse effects, Math. Probl. Eng. 2013 (2013), Article ID 498781, 21 pages.
- M. Matic, Improvement of some inequalities of Euler-Gruss type, Comput. Math. Appl. 46 (2003), no. 8-9, 1325-1336. https://doi.org/10.1016/S0898-1221(03)90222-7
- M. A. Mercer, An improvement of the Gruss inequality, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 93, 4 pages.
- N. A.Mir and R. Ullah, Some inequalities of Ostrowski and Gruss type for triple integrals on time scales, Tamkang J. Math. 42 (2011), no. 4, 415-426.
- D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, 1993.
- S. K. Ntouyas, S. D. Purohit, and J. Tariboon, Certain Chebyshev type integral inequalities involving Hadamard's fractional operators, Abstr. Appl. Anal. 2014 (2014), Article ID 249091, 7 pages.
- U. M. Ozkan and H. Yildirim, Gruss type inequalities for double integrals on time scales, Comput. Math. Appl. 57 (2009), no. 3, 436-444. https://doi.org/10.1016/j.camwa.2008.11.006
- B. G. Pachpatte, On Gruss type integral inequalities, J. Inequal. Pure Appl. Math. 3 (2002), no. 1, Article 11, 5 pages.
- B. G. Pachpatte, A note on Chebyshev-Gruss inequalities for differentiable functions, Tamsui Oxf. J. Math. Sci. 22 (2006), no. 1, 29-36.
- S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues, J. Math. Inequl. 7 (2013), no. 2, 239-249.
- S. D. Purohit and R. K. Raina, Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. Tec. Ing. Univ. Zulia 37 (2014), no. 2, 167-175.
- J. D. Ramirez and A. A. Vatsala, Monotonic iterative technique for fractional differential equations with periodic boundary conditions, Opusc. Math. 29 (2009), no. 3, 289-304. https://doi.org/10.7494/OpMath.2009.29.3.289
- M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11 (1978), no. 2, 135-143.
- H.-R. Sun, Y.-N. Li, J. J. Nieto, and Q. Tang, Existence of solutions for Sturm-Liouville boundary value problem of impulsive differential equations, Abstr. Appl. Anal. 2012 (2012), Article ID 707163, 19 pages.
- J. Tariboon, S. K. Ntouyas, and W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci. 2014 (2014), Article ID 869434, 6 pages.
- G. Wang, P. Agarwal, and M. Chand, Certain Gruss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl. 2014 (2014), 147, 8 pages. https://doi.org/10.1186/1029-242X-2014-8
- W. Yang, On weighted q-Cebysev-Gruss type inequalities, Comput. Math. Appl. 61 (2011), no. 5, 1342-1347. https://doi.org/10.1016/j.camwa.2011.01.001
- Z.-H. Zhao, Y.-K. Chang, and J. J. Nieto, Asymptotic behavior of solutions to abstract stochastic fractional partial integrodifferential equations, Abstr. Appl. Anal. 2013 (2013), Article ID 138068, 8 pages.
- C. Zhu, W. Yang, and Q. Zhao, Some new fractional q-integral Gruss-type inequalities and other inequalities, J. Inequal. Appl. 2012 (2012), 299, 15 pages. https://doi.org/10.1186/1029-242X-2012-15