DOI QR코드

DOI QR Code

Vibration Analysis of AFM Microcantilevers Using an Equivalent Stiffness Element Model

등가강성요소 모델을 이용한 AFM 마이크로캔틸레버의 진동해석

  • Han, Dong Hee (Dept. of Mechanical Information Engineering, University of Seoul) ;
  • Kim, Il Kwang (Dept. of Mechanical Information Engineering, University of Seoul) ;
  • Lee, Soo Il (Dept. of Mechanical Information Engineering, University of Seoul)
  • 한동희 (서울시립대학교 기계정보공학과) ;
  • 김일광 (서울시립대학교 기계정보공학과) ;
  • 이수일 (서울시립대학교 기계정보공학과)
  • Received : 2014.02.24
  • Accepted : 2015.02.16
  • Published : 2015.05.01

Abstract

Atomic force microscopy (AFM) is powerful tool for determining properties of samples based on interactions between the sample surface and an approaching probe tip. In this study, we modeled the interactions between the sample and the tip of the AFM microcantilever as a single nonlinear spring with an equivalent stiffness element and simulated the dynamic behaviors of the AFM microcantilevers using the finite element method (FEM) and ANSYS software. With the simulation results, we analyzed the complex dynamic responses of the AFM cantilever using proper orthogonal decomposition (POD). In addition, we compared the simulation and experimental results using the same method. Consequently, we suggest an effective method to express the interaction between the tip and sample, and we confirm that the influence of the higher order model due to the interaction between the tip and sample is increased.

원자현미경(AFM)은 마이크로캔틸레버 끝단의 팁이 시료에 다가갈 때 발생하는 팁과 시료 표면 사이의 상호작용을 이용하여 시료의 다양한 특성들을 찾아내는 매우 유용한 도구이다. 본 논문에서는 이러한 AFM 마이크로캔틸레버의 팁과 시료 사이의 상호작용력을 비선형 스프링을 이용하여 동일한 강성을 갖는 요소로 모델링 하였고 유한요소법을 이용하여 시뮬레이션을 수행하였다. 또한 시뮬레이션 결과를 적합직교분해법을 이용하여 분석함으로써 AFM 마이크로캔틸레버의 복잡한 동적 특성을 파악하였으며 이를 같은 방법으로 분석한 실험 결과와 비교하였다. 그 결과 팁과 시료 사이의 상호작용력을 효과적으로 모델링 할 수 있는 방법을 제시하였으며 이러한 상호작용력으로 인해 고차모드의 영향이 증가함을 확인하였다.

Keywords

References

  1. Lee, S. I., Howell, S.W., Raman, A. and Reifenberger, R., 2002, "Nonlinear Dynamics of Microcantilever in Tapping Mode Atomic Force Microscopy:a Comparison Between Theory and Experiment," Physical Review B, Vol. 66, pp.115-409.
  2. Hong, S. H. and Lee, S. I., 2010, "Vibration Analysis of the Tapping AFM Microcantilevers Using Proper Orthogonal Decomposition," Tran. of the Korean Society for Noise and Vibration Engineering, Vol.20, No. 4, pp. 414-421. https://doi.org/10.5050/KSNVE.2010.20.4.414
  3. Kim, I. K., Han, D. H., Lee, J. W. and Lee, S. I., 2012, "Classification of Empirical Orthogonal Mode in Multi-Modal AFM Microcantilievrs," Proceedings of the Korean Society for Noise and Vibration Engineering Annual Spring Conference, pp.167-168.
  4. Hong, S. H., Lee, S. I. and Lee, J. M., 2004, "Nonlinear Dynamics of AFM Tip with Different Contact Models," Proceedings of the Korean Society for Noise and Vibration Engineering Annual Spring Conference, pp.73-76.
  5. Melcher, J., Kiracofe, D., Hu, S., Johnson, S. and Raman, A., 2012, Virtual Environment for Dynamic AFM First Time User's Manual, Purdue University.
  6. http://www.nanosensors.com/PointProbe-Plus-Non-Contact-Tapping-Mode-High-Resonance-Frequencyafm-tip-PPP-NCH
  7. http://probe.olympus-global.com/en/product/omcl_ac240ts_w2/index.cfm
  8. Kerschen, G., Golinval, J. C., Vakakis, A. F.and Bergman, L. A., 2005, "The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: an Overview," Nonlinear Dynamics, Vol.41, No. 1-3, pp.147-169. https://doi.org/10.1007/s11071-005-2803-2
  9. Kim, I. K. and Lee, S. I, 2012, "Multi-Modal Dynamic Analysis of AFM Microcantilevers," Proceedings of the Korean Society for Noise and Vibration Engineering Annual Autumn Conference, pp. 296-297.