DOI QR코드

DOI QR Code

Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings

원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시

  • Received : 2014.02.20
  • Accepted : 2015.03.15
  • Published : 2015.05.01

Abstract

Since the Fukushima nuclear accident, several researchers are extensively studying the effect of torsion on the piping systems In nuclear power plants. Piping installations in power plants with a circumferential crack can be operated under combined loading conditions such as bending and torsion. ASME Code provides flaw evaluations for fully plastic fractures using limit load criteria for the structural integrity of the cracked pipes. According to the recent version of Code, combined loadings are provided only for the membrane and bending. Even though actual operating conditions have torsion loading, the methodology for evaluating torsion load is not established. This paper provides the results of limit load analyses by using finite element models for circumferentially cracked pipes under pure bending, pure torsion, and combined bending and torsion with tension. Theoretical limit load solutions based on net-section fully plastic criteria are suggested and verified with the results of finite element analyses.

후쿠시마 원전 사고 이후로 원자력 발전 플랜트의 배관 시스템에 가해지는 비틀림 하중의 영향에 대한 연구가 여러 연구자들에 의해서 수행되었다. 발전 플랜트의 원주방향 균열을 포함한 배관은 정상운전 조건이나 갑자기 발생한 사고에 의해서 굽힘과 비틀림과 같은 하중을 받을 수 있다. ASME 코드에서는 균열 배관의 구조건전성 확보를 위해서 한계하중 기법을 사용해서 완전소성 파단에 대한 결함평가를 제공한다. 최근 개정된 코드에 따르면, 복합하중은 막응력과 굽힘 응력만을 포함하고 있다. 실제로 운전 환경에서 비틀림 하중이 가해질 수 있음에도 불구하고, 비틀림 하중을 평가하는 방법론에 대해서는 언급하지 않았다. 본 논문에서는 한계하중 분석을 기반으로 원주방향 균열 존재하는 배관에 단순 굽힘과 단순 비틀림, 인장을 포함한 굽힘 비틀림 복합하중이 가해질 경우에 대한 유한요소해석 결과를 포함하고 있다. 전단면 완전항복 기준을 만족하는 한계하중 이론해를 제안하고 유한요소해석을 통해서 이를 검증하였다.

Keywords

References

  1. American Society of Mechanical Engineers, 2011, ASME Boiler and Pressure Vessel Code, Section XI, Non-mandatory Appendix C.
  2. Hill, R., and Siebel, M. P. L., 1951, "On Combined Bending and Twisting of Thin Tubes in the Plastic Range," Phil. Mag., 42, p. 722. https://doi.org/10.1080/14786445108561300
  3. Hodge Jr., P. G. and Panarelli, J., 1963, "Plastic Analysis of Cylindrical Shells Under Pressure, Axial Load and Torque," Proceedings of the Eighth Midwestern Mechanics Conference.
  4. Hoang, P. H., Bezensek, B., Hasegawa, K., and Li, Y., 2010, "Effects of Torsion on Equivalent Bending Moment for Limit Load and EPFM Circumferential Pipe Flaw Evaluations," Proceedings of PVP, Paper No. PVP2010-25283.
  5. Li, Y., Hasegawa, K., Hoang, P. H., and Bezensek, B., 2010, "Prediction Method for Plastic Collapse of Pipes Subjected to Combined Bending and Torsion Moments," ASME PVP2010, Paper No. PVP2010-25101.
  6. Zahoor, A., Wilkowski, G., Abou-Sayed, I., Marschall, C., Broek, D., Sampath, S., Rhee, H., and Ahmad, J., 1982, "Instability Predictions for Circumferentially Cracked Type-304 Stainless Steel Pipes Under Dynamic Loading. Volume 2. Appendixes. Final Report. [BWR]," No. EPRI-NP-2347-Vol.2; Other: ON: DE82903855 United StatesOther: ON: DE82903855Wed Feb 06 20:28:11 EST 2008NTIS, PC A17/MF A01.ERA-07- 043330; INS-82-013208; EDB-82-124473English.
  7. Rahman, S., 1998, "Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders-Part II: Idealized Cracks and Closed-Form Solutions," Engineering Fracture Mechanics, 61(2), pp. 213-230. https://doi.org/10.1016/S0013-7944(98)00061-7
  8. Oh, C. K., Kim, Y. J., Kim, J. S., and Jin, T. E., 2008, "Yield Locus for Circumferential Part-Through Surface Cracked Pipes Under Combined Pressure and Bending," Engineering Fracture Mechanics, 75(8), pp. 2175-2190. https://doi.org/10.1016/j.engfracmech.2007.10.006
  9. Kachanov, L. M., 1971, "Foundations of the Theory of Plasticity," North-Holland Publishing Company.