Activation method of inquiry activity for students playing a leading role in teaching and learning by applying the van Hiele's learning process by stages in undergraduate pre-service teachers' mathematics class

van Hiele의 단계적 교수법에 근거한 예비교사들의 수학 수업에서 탐구 활동의 활성화 방안 탐색

  • Received : 2015.02.24
  • Accepted : 2015.03.28
  • Published : 2015.03.30

Abstract

It is one of the fundamental issues that students in teaching and learning process should take a proactive role in school mathematics. Inquiry or discovery learning in school mathematics is the specific method for students to participate in lessons on their own initiative, which is supported by many scholars in mathematics education. In this paper, we investigate pre-service teachers' perspectives of Inquiry or discovery learning by intensively analyzing information and guided orientation in teaching practice. From this, we find the direction of the pre-service teacher training program for carrying out pre-service teachers' role to help students to take a proactive role in school mathematics.

본 논문에서는 van Hiele의 단계적 교수법에 근거한 예비교사들의 수학 수업에서 학생들을 지식 구성의 주체로 만드는 탐구 활동의 활성화 방안을 탐색하고자 한다. 이를 위하여 예비교사들의 수업 지도안과 수업 시연에서 van Hiele의 단계적 교수법의 정보 단계와 안내된 탐구단계에서의 교수 학습 상황을 분석한다. 이와 같은 교수 학습 상황에서 탐구학습 또는 발견학습의 활성화 가능성을 탐색한다. 특히, 본 연구에서 삼각형의 외심과 내심을 두 도형의 위치관계라는 개념구조 안에서 삼각형과 원의 위치관계를 출발점으로 설정하는 방안을 제안하고 이 제안에 대한 구체적인 실행 방법으로서 "사실1: 삼각형의 외접원은 유일하게 존재한다."와 "사실2: 삼각형의 내접원은 유일하게 존재한다."는 두 가지 사실의 도입과 증명을 van Hiele의 단계적 교수법에 근거한 새로운 지도방법으로 제시하고자 한다.

Keywords

References

  1. 강신덕.홍인숙.김영우.이재순.전민정.나미영 (2010). 중학교 수학 2. 서울: 교학사.
  2. 강윤수.서은정 (2009). 삼각형의 내.외심 지도 방법. 학교수학 12(3), 171-188.
  3. 교육인적자원부 (2007). (http:/www.moe.go.kr). 2007개정 수학과 교육과정.
  4. 교육과학기술부 (2011). (http:/www.moe.go.kr). 2009개정 수학과 교육과정.
  5. 김남희 (1999). Van Hiele 이론을 기초로 한 중학교 기하학습에 관한 연구. 서강대학교교육대학원 석사학위논문.
  6. 김원경.조민식.김영주.김윤희.방환선.윤기원.이춘신 (2010). 중학교 수학 2. 서울: 비유와 상징.
  7. 김홍종.계승혁.오지은.원애경 (2010). 중학교 수학 2. 서울: 성지출판.
  8. 박규홍.최병철.안숙영.김준식.유미경 (2010). 중학교 수학 2. 서울: 동화사.
  9. 박영훈.여태경.심성아.김선화.이태림.김수미 (2010). 중학교 수학 2. 서울: 천재문화.
  10. 박윤범.남상이.최소희.홍유미 (2010). 중학교 수학 2. 경기도: 웅진싱크빅.
  11. 박종률.유종광.이창주.오혜정.이미라.박진호 (2010). 중학교 수학 2. 서울: 도서출판 디딤돌.
  12. 박지혜 (2000). Van Hiele 이론에 의한 중학생들의 기하인지 수준과 교재 선정에 관한 연구. 연세대학교 교육대학원 석사학위논문.
  13. 송근화.정윤석.유기종.우종목.이홍기.이용경 (2010). 중학교 수학 2. 서울: 새롬교육.
  14. 신항균.이광연.윤혜영.이지현 (2010). 중학교 수학 2. 서울: 지학사.
  15. 유희찬.류성림.한혜정.강순모.제수연.김명수.천태선.김민정 (2010). 중학교 수학 2. 서울: 미래엔 컬처그룹.
  16. 윤성식.조난숙.김화영.조준모.장홍월.김해경 (2010). 중학교 수학 2. 서울: 더텍스트.
  17. 이강섭.왕규채.송교식.이강희l.안인숙 (2010) 중학교 수학 2. 서울: 도서출판 지학사.
  18. 이소진 (2001). 반 힐 모형에 따른 교과서의 재구성 및 그에 따른 학습효과. 충북대학교 교육대학원 석사학위논문.
  19. 이준열.최부림.김동재.송영준.윤상호.황선미 (2010). 중학교 수학 2. 서울: 천재교육.
  20. 전영배.강정기.노은환 (2011). 삼각형의 외심, 내심의 정의에 관한 고찰. 학교수학14(3), 355-375.
  21. 정상권.이재학.박혜숙.홍진곤.서혜숙.박부성.강은주 (2010). 중학교 수학 2. 서울: 금성출판사.
  22. 정창현.김창동.이치형.민정범.김지용 (2010). 중학교 수학 2. 서울: 대교.
  23. 최용준.한대희.박진교.김강은.신태양.배명주 (2010). 중학교 수학 2. 서울: 천재문화.
  24. 최현호 (1990). Van Hiele의 기하인지 발달이론과 증명능력에 관한 기초 연구. 연세대학교 교육대학원 석사학위논문.
  25. Van Hiele, P.M., 우정호, 박교식, 남진영, 강현영, 임재훈, 권석일, 박선용, 최지선 역 (2009). 구조와 통찰/ 피에르 마리 판 힐러 지음. 서울: 경문사.
  26. Bass, L. E., Charles, R. I., Hall, B., Johnson, A., & Kennedy, D. (2009). Geometry. New Jersey: Pearson.
  27. Bruner, J. (1960). The Process of Education. New York: The Harvard University Press.
  28. Charles, R. I., Illingworth, M., McNemar, B., Mills, D., Ramirez, A., & Reeves, A. (2008). Mathematics Course 1, 2, 3. New Jersey: Pearson Prentice Hall.
  29. Cummins, J., Kanold T., Kenney, M., Malloy, C., & Mojica, Y. (2008). Geometry: Concepts and App;ications. New York: Glencoe.
  30. Elbers, E. (2003). Classroom Interaction as Reflection: Learning and Teaching Mathematics in a Community of Inquiry. Educational studies in mathematics, 54, 77-99. https://doi.org/10.1023/B:EDUC.0000005211.95182.90
  31. Freudenthal, H. (1991). Revisiting Mathematics Education. Kluwer: Dordrecht.
  32. Goos, M. (2004). Learning Mathematics in a Classroom Community of Inquiry. Journal for Research in Mathematics Education, 35(4), 258-291. https://doi.org/10.2307/30034810
  33. Healy, C. C. (1993). Creating miracles: A story of student discovery. Berkeley, CA: Key Curriculum Press.
  34. Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. (2007). Geometry. Boston: McDougal Littell.
  35. Mayberry, J. (1983). The Van Hiele Levels of Geometric Thought in Undergraduate Preservice Teachers. Journal for Research in Mathematics Education, 14(1), 58-69. https://doi.org/10.2307/748797
  36. NCTM (1989). Curriculum and Evaluation Standards For School Mathematics. Reston, VA: Author.
  37. NCTM (2000). Principles and Standards For School Mathematics. Reston, VA: Author.
  38. Silver, E. A. (1993). On mathematical problem posing. In I. Hirabayashi; N. Nohda; K. Shigematsu; F.-L. Lin (Eds.), Proceedings of the 17th PME Conference Vol. I (pp. 66-85). University of Tsukuba, Tsukuba.
  39. Skemp, R. R. (1987). The psychology of learning mathematics: Expanded American Edition. New Jersey: Lawrence Erlbaum Associates.
  40. Streefland, L. (1987). Free production of fraction monographs-In: J. C. Bergeron; N. Herscovics; C. Kieran (Eds.), Proceedings of the Eleventh Annual Meeting of the International Group for the Psychology of Mathematics Education, Volume I (pp. 405-410). Montreal: Canada.
  41. Streefland, L. (1991). Fractions in realistic mathematics education. Dordrecht, Netherlands: Kluwer.
  42. Van den Brink, J. F. (1987). Children as arithmetic book authors. For the learning of mathematics 7 (2), 44-48.
  43. Van Hiele, P. M. (1986). Structure and Insight: A Theory of Mathematics Education. Orlando: Academic Press, Inc.