DOI QR코드

DOI QR Code

Zadeh's extension principle for 2-dimensional triangular fuzzy numbers

2-차원 삼각퍼지수에 대한 Zadeh의 확장원리

  • Kim, Changil (Department of Mathematics Education, Dankook University) ;
  • Yun, Yong Sik (Department of Mathematics, Jeju National University)
  • Received : 2014.12.22
  • Accepted : 2015.04.09
  • Published : 2015.04.25

Abstract

A triangular fuzzy number is one of the most popular fuzzy numbers. Many results for the extended algebraic operations between two triangular fuzzy numbers are well-known. We generalize the triangular fuzzy numbers on $\mathbb{R}$ to $\mathbb{R}^2$. By defining parametric operations between two regions valued ${\alpha}$-cuts, we get the parametric operations for two triangular fuzzy numbers defined on $\mathbb{R}^2$.

삼각퍼지수는 가장 유명한 퍼지수 중의 하나이다. 두 삼각퍼지수 사이의 확장된 대수적 작용소에 대한 많은 결과들이 알려져 있다. 우리는 $\mathbb{R}$ 위에 정의된 삼각퍼지수를 $\mathbb{R}^2$ 위로 일반화하였다. 영역을 값으로 갖는 두 ${\alpha}$-절단 사이에 매개변수 작용소를 정의함으로서 $\mathbb{R}^2$ 위에서 정의된 두 삼각퍼지수에 대한 매개변수 작용소를 얻을 수 있었다.

Keywords

References

  1. J. Byun and Y. S. Yun, Parametric operations for two fuzzy number, Communications of Korean Mathematical Society, vol. 28, no. 3, pp. 635-642, 2013. https://doi.org/10.4134/CKMS.2013.28.3.635
  2. A. Kaufmann and M. M. Gupta, Introduction To Fuzzy Arithmetic : Theory and Applications, Van Nostrand Reinhold Co., New York, 1985.
  3. Y. S. Yun, S. U. Ryu and J. W. Park, The generalized triangular fuzzy sets, Journal of the Chungcheong Mathematical Society, vol. 22, no. 2, pp. 161-170, 2009.
  4. Y. S. Yun, J. C. Song and J. W. Park, Normal fuzzy probability for quadratic fuzzy number, Journal of fuzzy logic and intelligent systems, vol. 15, no. 3, pp. 277-281, 2005. https://doi.org/10.5391/JKIIS.2005.15.3.277
  5. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, Infor- mation Sciences, vol. 8, pp. 199-249, 1975. https://doi.org/10.1016/0020-0255(75)90036-5
  6. H. J. Zimmermann, Fuzzy set Theory - and Its Applications, Kluwer-Nijhoff Publishing, Boston-Dordrecht-Lancaster, 1985.