DOI QR코드

DOI QR Code

다중 추적자 영상을 위한 컴프턴 카메라

Multi-tracer Imaging of a Compton Camera

  • 김수미 (워싱턴주립대학교 방사선학과)
  • Kim, Soo Mee (Department of Radiology, University of Washington)
  • 투고 : 2015.01.02
  • 심사 : 2015.03.10
  • 발행 : 2015.03.31

초록

컴프턴 산란 현상을 이용하여 전자적 집속 방법으로 영상화하는 컴프턴카메라는 고민감도 및 고에너지 해상도의 장점을 이용하여 핵의학 응용분야에 대한 잠재력이 큰 영상 시스템이다. 본 논문에서는 컴프턴카메라를 이용한 다중 추적자 영상의 효용성 평가와 정확한 3차원 단면영상 촬영을 위한 Orlov 조건을 만족하는 회전하는 컴프턴카메라의 구조를 조사하였다. 140/511 keV의 방사선원의 소프트웨어 모형을 구성하고 이에 대한 몬테카를로 전산모사 시뮬레이션을 수행하여 리스트모드 배열된 부분집합 기댓값 최대화 방법으로 재구성된 다중 추적자 영상으로 컴프턴카메라의 효용성을 검증하였다. 산란부와 흡수부를 평행하게 위치시킨 고정된 컴프턴카메라와 촬영대상 주위 $360^{\circ}$를 회전하는 컴프턴카메라를 구성하여 검출된 투사선의 구좌표계 각도에 대한 히스토그램을 비교 평가하였다. 140/511 keV의 동시 계측된 몬테카를로 전산모사 데이터의 다중 추적자 영상이 2차원 및 3차원 재구성 시 잘 구분되는 것을 확인하였으며, 회전된 컴프턴카메라의 경우, 회전각도에 반비례하여 3차원 영상재구성에 필요한 유효 투사선이 증가하였다. 26분의 계산 시간 및 5백만개의 적절한 유효 투사선의 개수를 고려할 때 컴프턴카메라의 회전각은 $30^{\circ}$가 현실적으로 적절할 것이며 증가한 검출 시간은 다중 컴프턴카메라를 구성하여 해결할 수 있다. 본 논문에서 고찰한 고민감도 및 고에너지 해상도를 가진 컴프턴 카메라는 다중추적자 영상화를 위해 적합한 시스템이며 생화학 및 생리학적 상태 변화에 대한 임상 정보를 제공하며 각종 질병 진단 및 치료 방법 개발 등에 기여할 수 있는 잠재력이 있는 영상 시스템이다.

Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

키워드

참고문헌

  1. Gambhir SS, Barrio JR, Herschman HR, Phelps ME: Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26:481-490 (1999). https://doi.org/10.1016/S0969-8051(99)00021-9
  2. Phelps ME: Nuclear medicine, molecular imaging, and molecular medicine. J Nucl Med 43:13N-14N (2002).
  3. Rudin M, Weissleder R: Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123-131 (2003). https://doi.org/10.1038/nrd1007
  4. Cherry S: In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49:R13-R48 (2004). https://doi.org/10.1088/0031-9155/49/3/R01
  5. Fullerton GD, Hazle JD: The development of technologies for molecular imaging should be driven principally by biological questions to be addressed rather than by simply modifying existing imaging technologies. For the proposition. Med Phys 32:1231-1233 (2005). https://doi.org/10.1118/1.1866141
  6. Schelbert HR: Nuclear Medicine at a Crossroads. J Nucl Med 52:10S-15S (2011) https://doi.org/10.2967/jnumed.110.085639
  7. Cherry SR, Sorenson JA, Phelps ME: Physics in Nuclear Medicine. 3rd ed, Saunders (2003).
  8. Phelps ME: PET - molecular imaging and its biological applications. Springer New York (2004).
  9. Bailey DL, Townsend DW, Valk PE, Maisey MN: Positron emission tomography - basic sciences. Springer Longdon (2005).
  10. Todd RW, Nightingale JM, Everett DB: A proposed Gamma camera. Nature 251:132-134 (1974). https://doi.org/10.1038/251132a0
  11. Singh M: An electronically collimated gamma camera for single photon emission computed tomography: Part1 and 2. Med Phys 10:421-427 (1983). https://doi.org/10.1118/1.595313
  12. Phillips GW: Gamma-ray imaging with Compton cameras. Nucl Instr and Meth B 99:674-677 (1995). https://doi.org/10.1016/0168-583X(95)80085-9
  13. Yang YF, Gono Y, Motomura S, Enomoto S, Yano Y: A Compton camera for multitracer imaging. IEEE Trans Nucl Sci 48:656-661 (2001). https://doi.org/10.1109/23.940142
  14. Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S: Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J Anal AT Spectrom 23: 1089-1092 (2008). https://doi.org/10.1039/b802964d
  15. Motomura S, Fukuchi T, Kanayama Y, Haba H, Watanabe Y, Enomoto S: Three-dimensional tomographic imaging by semiconductor Compton camera GREI for multiple molecular simultaneous imaging. Nucl Sci Symp Conf Rec. 2009, Orlando, FL, USA, pp. 3330 - 3332.
  16. Seo H, Kim CH, Park JH, et al: Multitracing capability of double-scattering Compton imager with NaI(Tl) scintillator absorber. IEEE Trans Nucl Sci 57:1420-1425 (2010). https://doi.org/10.1109/TNS.2009.2035806
  17. Uche CZ, Round WH, Cree MJ: Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging. Australas Phys Eng Sci Med 35:357-364 (2012). https://doi.org/10.1007/s13246-012-0150-4
  18. Motomura S, Kanayama Y, Hiromura M, et al: Improved imaging performance of a semiconductor Compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms. J Anal At Spectrom 28:934-939 (2013). https://doi.org/10.1039/c3ja30185k
  19. Lee SH, Park JH, Park SH, et al: CIS - a GUI-based software system for Monte Carlo simulation of Compton camera. Nucl Technol 168:55-60 (2009). https://doi.org/10.13182/NT09-A9101
  20. Wilderman SJ, Rogers WL, Knoll GF, Engdahl JC: Fast algorithm for list mode back-projection of Compton scatter camera data. IEEE Trans Nucl Sci 45:957-962 (1998). https://doi.org/10.1109/23.682685
  21. Kim SM, Lee JS, Lee CS, et al: Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. Phys Med Biol 55:5007-5027 (2010). https://doi.org/10.1088/0031-9155/55/17/009
  22. Orlov SS: Theory of three-dimensional reconstruction. 1. Conditions for a complete set of projections. Sov Phys-Crystallogr 20: 312-314 (1975).
  23. Nguyen V-G, Lee S-J, Lee MN: GPU-accelerated 3D Bayesian image reconstruction from Compton scattered data. Phys Med Biol 56: 2817-2836 (2011). https://doi.org/10.1088/0031-9155/56/9/012
  24. Lowe VJ, Greer KL, Hanson MW, Jaszczak RJ, Coleman RE: Cardiac phantom evaluation of simultaneously acquired dual-isotope rest thallium-201/stress technetium-99m SPECT images. J Nucl Med 34:1998-2006 (1993)
  25. Berman DS, Kiat H, Friedman JD, et al: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J American College of Cardio 22:1455-1464 (1993). https://doi.org/10.1016/0735-1097(93)90557-H
  26. Cao ZJ, Chen CC, Maunoury C, Holder LE, Abraham TC, Tehan A: Phantom evaluation of simultaneous thallium-201/technetium-99m aquisition in single-photon emission tomography. European J Nucl Med 23:1514-1520 (1996). https://doi.org/10.1007/BF01254477
  27. Siebelink HM, Natale D, Sinusas AJ, Wackers F: Quantitative comparison of single-isotope and dual-isotope stressrest single-photon emission computed tomographic imaging for reversibility of defects. J Nucl Cardio 3:483-493 (1996) https://doi.org/10.1016/S1071-3581(96)90058-6
  28. Hannequin P, Weinmann P, Mas J, Vinot S: Preliminary clinical results of photon energy recovery in simultaneous rest TI-201/stress Tc-99m sestamibi myocardial SPECT. J Nucl Cardio 8:144-151 (2001). https://doi.org/10.1067/mnc.2001.111799
  29. Segall G: Assessment of myocardial viability by positron emission tomography. Nucl Med Commun 23:323-330 (2002) https://doi.org/10.1097/00006231-200204000-00005
  30. Groutars RG, Verzijlbergen FJ, Zwinderman AH, et al: Incremental prognostic value of myocardial SPET with dual-isotope rest 201Tl/stress 99mTc-tetrofosmin. European J Nucl Med 29:46-52 (2002). https://doi.org/10.1007/s002590100653
  31. Weinmann P, Faraggi M, Moretti J-L, Hannequin P: Clinical validation of simultaneous dual-isotope myocardial scintigraphy. European J Nucl Med and Molecular Imag 30:25-31 (2003). https://doi.org/10.1007/s00259-002-0995-y