DOI QR코드

DOI QR Code

Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect

토모다이렉트 3D-CRT을 이용한 유방암 환자의 회전 오차

  • Jung, Jae Hong (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Cho, Kwang Hwan (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Moon, Seong Kwon (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Bae, Sun Hyun (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Min, Chul Kee (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Kim, Eun Seog (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Yeo, Seung-Gu (Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Choi, Jin Ho (Department of Radiation Oncology, Gachon University Gil Medical Center of Korea) ;
  • Jung, Joo-Yong (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea) ;
  • Choe, Bo Young (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea) ;
  • Suh, Tae Suk (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea)
  • 정재홍 (순천향대학교 의과대학 방사선종양학교실) ;
  • 조광환 (순천향대학교 의과대학 방사선종양학교실) ;
  • 문성권 (순천향대학교 의과대학 방사선종양학교실) ;
  • 배선현 (순천향대학교 의과대학 방사선종양학교실) ;
  • 민철기 (순천향대학교 의과대학 방사선종양학교실) ;
  • 김은석 (순천향대학교 의과대학 방사선종양학교실) ;
  • 여승구 (순천향대학교 의과대학 방사선종양학교실) ;
  • 최진호 (가천의대 길병원 방사선종양학교실) ;
  • 정주영 (가톨릭대학교 의과대학 의공학교실, 생체의공학연구소) ;
  • 최보영 (가톨릭대학교 의과대학 의공학교실, 생체의공학연구소) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실, 생체의공학연구소)
  • Received : 2015.03.02
  • Accepted : 2015.03.17
  • Published : 2015.03.31

Abstract

The purpose of this study was to analyze the rotational errors of roll, pitch, and yaw in the whole breast cancer treated by the three-dimensional radiation therapy (3D-CRT) using TomoDirect (TD). Twenty-patient previously treated with TD 3D-CRT was selected. We performed a retrospective clinical analysis based on 80 images of megavoltage computed tomography (MVCT) including the systematic and random variation with patient setup errors and treatment setup margin (mm). In addition, a rotational error (degree) for each patient was analyzed using the automatic image registration. The treatment margin of X, Y, and Z directions were 4.2 mm, 6.2 mm, and 6.4 mm, respectively. The mean value of the rotational error for roll, pitch, and yaw were $0.3^{\circ}$, $0.5^{\circ}$, $0.1^{\circ}$, and all of systematic and random error was within $1.0^{\circ}$. The errors of patient positioning with the Y and Z directions have generally been mainly higher than the X direction. The percentage in treatment fractions in less than $2^{\circ}$ at roll, pitch, and yaw are 95.1%, 98.8%, and 97.5%, respectively. However, the edge of upper and lower (i.e., bottom) based on the center of therapy region (point) will quite a possibility that it is expected to twist even longer as the length of treatment region. The patient-specific characters should be considered for the accuracy and reproducibility of treatment and it is necessary to confirm periodically the rotational errors, including patient repositioning and repeating MVCT scan.

본 연구의 목적은 토모다이렉트 3D-CRT (TD 3D-CRT)을 이용한 유방암 방사선치료에서 회전축(roll, pitch, and yaw) 오차를 분석하고 자 하였다. TD-3DCRT로 치료가 종료된 유방암 환자 총 20명을 선정하였고, 총 80회의 MVCT 영상을 바탕으로 시스템(systematic), 임의(random) 오류를 포함한 환자위치잡이 오차(patient setup errors)와 치료 여백(treatment margin, mm)을 후향적으로 분석하였다. 또한, 각 환자에 대한 회전축 오차 분석은 자동영상정합(automatic image registration)을 이용하였다. X, Y, Z 방향에 대한 치료여백은 각각 4.2 mm, 6.2 mm, 6.4 mm였다. 회전축 오차에 대한 평균 각도(degree)는 roll, pitch, yaw가 각각 0.3도, 0.5도, 0.1도였고, 시스템과 임의 오류는 모두 1도 이내였다. 전반적으로 환자 위치잡이 오차는 Y와 Z방향에서 X에 비하여 높게 나타났다. 본 연구에서 회전축 오차 각도가 2도 이내는 roll, pitch, yaw에서 각각 95.1%, 98.8%, 97.5% 분포였다. 그러나, 치료영역의 길이가 길어짐에 따라 치료 중심지점을 기준으로 상부와 하부의 가장자리(Edge)가 틀어지게(Twisted)될 가능성이 높아질 수 있다. 따라서 치료의 정확성과 재현성을 위하여 각 환자의 특성을 고려하고, 회전축 오차를 주기적으로 확인할 필요가 있다.

Keywords

References

  1. Fields EC, Rabinovitch R, Ryan NE, Miften M, Westerly DC: A detailed evaluation of TomoDirect 3DCRT planning for whole-breast radiation therapy. Med Dosim 38:401-406 (2013) https://doi.org/10.1016/j.meddos.2013.04.008
  2. Chira C, Kirova YM, Liem X, et al: Helical tomothreapy for inoperable breast cancer: a new promising tool. Biomed Res Int 2013:1-8 (2013)
  3. Jones R, Yang W, Read P, Sheng K: Radiation therapy of post-mastoectomy patients with positive nodes fixed beam tomotherapy. Radiother Oncol 100:247-252 (2011) https://doi.org/10.1016/j.radonc.2011.05.004
  4. Langner UW, Molloy JA, Gleason JF Jr, Feddock JM: A feasibility study using TomoDirect for craniospinal irradiation. J appl Clin Med Phys 14:104-114 (2013) https://doi.org/10.1120/jacmp.v14i5.4304
  5. Klein M, Gaede S, Yartsev S: A study of longitudinal tumor motion in helical tomotherapy using a cylindrical phantom. J appl Clin Med Phys 14:52-61 (2013)
  6. Franco P, Catuzzo P, Cante D, et al: TomoDirect: an efficient means to deliver radiation at static angles with tomotherapy. Tumori 97:498-502 (2011) https://doi.org/10.1177/030089161109700414
  7. Boswell SA, Jeraj R, Ruchala KJ, et al: A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy. Med Phys 32:1630-1639 (2005) https://doi.org/10.1118/1.1914543
  8. Kaiser A, Schultheiss TE, Wong JY, et al: Pitch, roll, and yaw variations in patient positioning. Int J Radiat Oncol Biol Phys 66:949-955 (2006) https://doi.org/10.1016/j.ijrobp.2006.05.055
  9. Zhou J, Uhl B, Dewit K, et al: Analysis of daily setup variation with tomotherapy megavoltage computed tomography. Med Dosim 35:31-37 (2010) https://doi.org/10.1016/j.meddos.2009.01.005
  10. George R, Keall PJ, Kini VR, et al: Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys 30:552-562 (2003) https://doi.org/10.1118/1.1543151
  11. Jain P, Marchant T, Green M, et al: Inter-fraction motion and dosimetric consequences during breast intensity-modulated radiotherapy (IMRT). Radiother Oncol 90:93-98 (2009) https://doi.org/10.1016/j.radonc.2008.10.010
  12. Reynders T, Tournel K, De Coninck P, et al: Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments. Radiother Oncol 93:71-79 (2009) https://doi.org/10.1016/j.radonc.2009.07.005
  13. Goddu SM, Yaddanapudi S, Pechenaya OL, et al: Dosimetric consequences of uncorrected setup errors in helical Tomotherapy treatments of breast-cancer patients. Radiother Oncol 93:64-70 (2009) https://doi.org/10.1016/j.radonc.2009.07.013
  14. Furuya T, Sugimoto S, Kurokawa C, Ozawa S, Karasawa K, Sasai K: The dosimetric impact of respiratory breast movement and daily setup error on tangential whole breast irradiation using conventional wedge, field-in-field and irregular surface compensator techniques. J Radiat Res 54:157-165 (2013) https://doi.org/10.1093/jrr/rrs064
  15. van Herk M. Errors and Margins in Radiotherapy. Semi Int Radiat Oncol 14:52-64 (2004) https://doi.org/10.1053/j.semradonc.2003.10.003
  16. Kim YL, Cho KW, Jung JH, et al: Analysis of Automatic Rigid Image-Registration on Tomotherapy. Journal of Radiological Science and Technology 37:37-47 (2014)
  17. Jassal K, Bisht S, Kataria T, Sachdev K, Choughle A, Supe S: Comparison of Geometrical Uncertainties in Breast Radiation Therapy with Different Immobilization Methods. J Nucl Med Radiat 4:1-6 (2013)

Cited by

  1. Setup deviations for whole-breast radiotherapy with TomoDirect: A comparison of weekly and biweekly image-guided protocols vol.69, pp.7, 2015, https://doi.org/10.3938/jkps.69.1247
  2. Comparison of Two Different Immobilization Devices for Pelvic Region Radiotherapy in Tomotherapy vol.27, pp.4, 2015, https://doi.org/10.14316/pmp.2016.27.4.250