DOI QR코드

DOI QR Code

Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii

  • Yoo, Boung-Hyuk (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2015.08.06
  • Accepted : 2015.08.24
  • Published : 2015.11.28

Abstract

This study is the first report of the entire nucleotide sequence of an inositol phosphoceramide synthase gene from the stress-tolerant yeast Pichia kudriavzevii (PkAUR1). Sequence analysis revealed an open reading frame that spans 1,443 bp and encodes a 480-amino-acid-residue protein with the highest sequence similarity (41.7%) to Aur1 from Spathaspora passalidarum. A phenotypic assay with transformed S. cerevisiae and P. kudriavzevii indicated that two amino acid residues, Phe166 and Gly249, play crucial roles in the resistance to aureobasidin A, which is consistent with previous reports for other fungal Aur1s. The GenBank Accession No. for PkAUR1 is KP729614.

Keywords

References

  1. Casey GP, Xiao W, Rank GH. 1988. A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMR1 encoded resistance to the herbicide sulfometuron methyl. J. Inst. Brew. 94: 93-97. https://doi.org/10.1002/j.2050-0416.1988.tb04564.x
  2. Endo M, Takesako K, Kato I, Yamaguchi H. 1997. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 41: 672-676.
  3. Gallardo JC, Souza CS, Cicarelli RM, Oliveira KF, Morais MR, Laluce C. 2011. Enrichment of a continuous culture of Saccharomyces cerevisiae with the yeast Issatchenkia orientalis in the production of ethanol at increasing temperatures. J. Ind. Microbiol. Biotechnol. 38: 405-414. https://doi.org/10.1007/s10295-010-0783-9
  4. Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethyleneglycol method. Methods Enzymol. 350: 87-96. https://doi.org/10.1016/S0076-6879(02)50957-5
  5. Hashida-Okado T, Ogawa A, Kato I, Takesako K. 1998. Transformation system for prototrophic industirial yeasts using the AUR1 gene as a dominant selection marker. FEBS Lett. 425: 117-122. https://doi.org/10.1016/S0014-5793(98)00211-7
  6. Hashida-Okado T, Yasumoto R, Endo M, Takesako K, Kato I. 1998. Isolation and characterization of the aureobasidin Aresistant gene, aur1R, on Schizosaccharomyces pombe: roles of Aur1p+ in cell morphogenesis. Curr. Genet. 33: 38-45. https://doi.org/10.1007/s002940050306
  7. Heidler SA, Radding JA. 2000. Inositol phosphoryl transferases from human pathogenic fungi. Biochim. Biophys. Acta 1500: 147-152. https://doi.org/10.1016/S0925-4439(99)00097-6
  8. Heidmann S, Schindewolf C, Stumpf G, Domdey H. 1994. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 4633-4342. https://doi.org/10.1128/MCB.14.7.4633
  9. Hentges P, Van Driessche B, Tafforeau L, Vandenhaute J, Carr AM. 2005. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 13: 1013-1019. https://doi.org/10.1002/yea.1291
  10. Hope IA, Struhl K. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885-894. https://doi.org/10.1016/0092-8674(86)90070-X
  11. Ikai K, Takesako K, Shiomi K, Moriguchi M, Umeda Y, Yamamoto J, et al. 1991. Structure of aureobasidin A. J. Antibiot. 44: 925-933. https://doi.org/10.7164/antibiotics.44.925
  12. Isono N, Hayakawa H, Usami A, Mishima T, Hisamatsu M. 2012. A comparative study of ethanol production by Issatchenkia orientalis strains under stress conditions. Appl. Microbiol. Biotechnol. 113: 76-78.
  13. Kanda K, Ishida T, Hirota R, Ono S, Motomura K, Ikeda T, et al. 2014. Application of a phosphite dehydrogenase gene as a novel dominant selection marker for yeasts. J. Biotechnol. 182-183: 68-73. https://doi.org/10.1016/j.jbiotec.2014.04.012
  14. Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamatsu M, et al. 2010. Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Appl. Microbiol. Biotechnol. 87: 1841-1853. https://doi.org/10.1007/s00253-010-2629-9
  15. Kurtzman CP, Smiley MJ, Johnson CJ. 1980. Emendation of the genus Issatchenkia kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol. 30: 503-513. https://doi.org/10.1099/00207713-30-2-503
  16. Kwon YJ, Ma AZ, Li Q, Wang F, Zhuang GQ, Liu CZ. 2011. Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis. Bioresour. Technol. 102: 8099-8104. https://doi.org/10.1016/j.biortech.2011.06.035
  17. Meroth CB, Hammes WP, Hertel C. 2003. Identification and population dynamics of yeasts in soudrough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69: 7453-7461. https://doi.org/10.1128/AEM.69.12.7453-7461.2003
  18. Ogawa-Mitsuhashi K, Sagane K, Kuromitsu J, Takagi H, Tsukahara K. 2009. MPR1 as a novel selection marker in Saccharomyces cerevisiae. Yeast 11: 587-593. https://doi.org/10.1002/yea.1708
  19. Ongol MP, Asano K. 2009. Main microorganisms involved in the fermentation of Ugandan ghee. Int. J. Food Microbiol. 133: 286-291. https://doi.org/10.1016/j.ijfoodmicro.2009.06.003
  20. Park EH, Lee DH, Seo JH, Kim MD. 2011. Cloning and characterization of a glyoxalase I gene from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 21: 277-283.
  21. Sakai K, Yamamoto M. 1986. Transformation of yeast, Saccharomyces carlsbergensis, using an antibiotic resistance marker. Agric. Biol. Chem. 50: 1177-1182. https://doi.org/10.1271/bbb1961.50.1177
  22. Sambrook J, Russell DW. 2011. Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  23. Takesako K, Kuroda H, Inoue T, Haruna F, Yoshikawa Y, Kato I, et al. 1993. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 46: 1414-1420. https://doi.org/10.7164/antibiotics.46.1414
  24. Toivary M, Vehkomäki ML, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG. 2013. Low pH D-xylonate production with Pichia kudriavzevii. Bioresour. Technol. 133: 555-562. https://doi.org/10.1016/j.biortech.2013.01.157
  25. Van Den Berg MA, Steensma HY. 1997. Expression cassettes for formaldehyde and fluoroacetate resistance, two dominant markers in Saccharomyces cerevisiae. Yeast 13: 551-559. https://doi.org/10.1002/(SICI)1097-0061(199705)13:6<551::AID-YEA113>3.0.CO;2-0