References
- Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, Third Edition, Wiley, New York.
- Cantor, S. B., Yamal, J. M., Guillaud, M., Cox, D. D., Atkinson, E. N., Benedet, J. L., Miller, D., Ehlen, T., Matisic, J., van Niekerk, D., Bertrand, M., Milbourne, A., Rhodes, H., Malpica, A., Staerkel, G., Nader-Eftekhari, S., Adler-Storthz, K., Scheurer, M. E., Basen-Engquist, K., Shinn, E., West, L. A., Vlastos, A. T., Tao, X., Beck, J. R., MacAulay, C. and Follen, M. (2011). Accuracy of optical spectroscopy for the detection of cervical intraepithelial neoplasia: Testing a device as an adjunct to colposcopy, International Journal of Cancer, 128, 1151-1168. https://doi.org/10.1002/ijc.25667
- Cox, D. D. and Lee, J. S. (2008). Pointwise testing with functional data using the Westfall-Young randomization method, Biometrika, 95, 621-634. https://doi.org/10.1093/biomet/asn021
- Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman's truncation, Journal of American Statistical Association, 91, 674-688. https://doi.org/10.1080/01621459.1996.10476936
- Fan, J. and Lin, S. (1998). Test of significance when data are curves, Journal of the American Statistical Association, 93, 1007-1021. https://doi.org/10.1080/01621459.1998.10473763
- Good, P. I. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses, Springer, New York.
- Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis, Journal of the Royal Statistical Society, Series B, 68, 109-126. https://doi.org/10.1111/j.1467-9868.2005.00535.x
- Inglot, T., Kallenberg, W. C. M. and Ledwina, T. (1994). Power approximations to and power comarison of smooth goodness-of-fit tests, Scandinavian Journal of Statistics, 21, 131-145.
- Johnstone, I. M. (2001). On the distribution of the largest eigenvalues in principal components analysis, Annals of Statistics, 29, 295-327.
- Lopes, M. E., Jacob, L. and Wainwright, M. J. (2012). A more powerful two-sample test in high dimensions using random projection (arXiv:1108.2401v2)
- Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory, Wiley, New York.
- Neyman, J. (1937). Smooth test for goodness of fit, Skandinavisk Aktuarietidskrift, 20, 149-199.
- Pikkula, B. M., Shuhatovich, O., Price, R. L., Serachitopol, D. M., Follen, M., McKinnon, N., MacAulay, C., Richards-Kortum, R., Lee, J. S., Atkinson, E. N. and Cox, D. D. (2007). In-strumentation as a source of variability in the application of fluorescence spectroscopy devices for detecting cervical neoplasia, Journal of Biomedical Optics, 12, 034014. https://doi.org/10.1117/1.2745285
- Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed., Springer, New York.
- Rencher, A. C. (2002). Methods of Multivariate Analysis, Second edition, Wiley, New York.
- Shen, Q. and Faraway, J. (2004). An F test for linear models with functional responses, Statistica Sinica, 14, 1239-1257.
- Taylor, J. E., Worsley, K. J. and Gosselin, F. (2007). Maxima of discretely sampled random fields with an application to 'bubbles', Biometrika, 94, 1-18. https://doi.org/10.1093/biomet/asm004
- Wald, A. andWolfowitz, J. (1944). Statistical tests based on permutations of the observations, Annals of Mathematical Statistics, 15, 358-372. https://doi.org/10.1214/aoms/1177731207
- Zhang, J. (2011). Statistical inferences for linear models with functional responses, Statistica Sinica, 21, 1431-1451 https://doi.org/10.5705/ss.2009.302