References
-
J. Ahn and Y. S. Shin, The Minimal Free Resolution of A Star-Configuration in
${\mathbb{P}}^n$ and The Weak Lefschetz Property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417. https://doi.org/10.4134/JKMS.2012.49.2.405 - E. Carlini, E. Guardo, and A. V. Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. https://doi.org/10.1016/j.jalgebra.2014.02.013
-
A. V. Geramita, B. Harbourne, and J. C. Migliore, Star Configurations in
${\mathbb{P}}^n$ , J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034 -
J. P. Park and Y. S. Shin, The Minimal Free Graded Resolution of A Star-configuration in
${\mathbb{P}}^n$ , J. Pure Appl. Algebra 219 (2015), 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026 - Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Applications 11 (2012), no. 6, 1250109 (27 pages).
-
Y. S. Shin, Star-Configurations in
${\mathbb{P}}^2$ Having Generic Hilbert Functions and The weak-Lefschetz Property, Comm. in Algebra 40 (2012), 2226-2242. https://doi.org/10.1080/00927872.2012.656783