DOI QR코드

DOI QR Code

A POINT STAR-CONFIGURATION IN ℙn HAVING GENERIC HILBERT FUNCTION

  • Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
  • Received : 2014.10.31
  • Accepted : 2015.01.27
  • Published : 2015.02.15

Abstract

We find a necessary and sufficient condition for which a point star-configuration in $\mathbb{P}^n$ has generic Hilbert function. More precisely, a point star-configuration in $\mathbb{P}^n$ defined by general forms of degrees $d_1,{\ldots},d_s$ with $3{\leq}n{\leq}s$ has generic Hilbert function if and only if $d_1={\cdots}=d_{s-1}=1$ and $d_s=1,2$. Otherwise, the Hilbert function of a point star-configuration in $\mathbb{P}^n$ is NEVER generic.

Keywords

References

  1. J. Ahn and Y. S. Shin, The Minimal Free Resolution of A Star-Configuration in ${\mathbb{P}}^n$ and The Weak Lefschetz Property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417. https://doi.org/10.4134/JKMS.2012.49.2.405
  2. E. Carlini, E. Guardo, and A. V. Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. https://doi.org/10.1016/j.jalgebra.2014.02.013
  3. A. V. Geramita, B. Harbourne, and J. C. Migliore, Star Configurations in ${\mathbb{P}}^n$, J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034
  4. J. P. Park and Y. S. Shin, The Minimal Free Graded Resolution of A Star-configuration in ${\mathbb{P}}^n$, J. Pure Appl. Algebra 219 (2015), 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026
  5. Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Applications 11 (2012), no. 6, 1250109 (27 pages).
  6. Y. S. Shin, Star-Configurations in ${\mathbb{P}}^2$ Having Generic Hilbert Functions and The weak-Lefschetz Property, Comm. in Algebra 40 (2012), 2226-2242. https://doi.org/10.1080/00927872.2012.656783