DOI QR코드

DOI QR Code

Investigation of Microsatellite Markers for Traceability and Individual Discrimination of Korean Native Ducks

한국 토종오리의 개체 식별 및 품종 구분을 위한 Microsatellite 마커 탐색

  • Seo, Dong Won (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sultana, Hasina (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Nu Ri (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Yeon Su (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jin, Shil (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Heo, Kang Nyeong (Poultry Science Division, National Institute of Animal Science, RDA) ;
  • Jin, Seon Deok (Natural History Research Team, National Science Museum) ;
  • Lee, Jun Heon (Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University)
  • 서동원 (충남대학교 동물자원생명과학과) ;
  • 술타나 (충남대학교 동물자원생명과학과) ;
  • 최누리 (충남대학교 동물자원생명과학과) ;
  • 김연수 (충남대학교 동물자원생명과학과) ;
  • 진실 (충남대학교 동물자원생명과학과) ;
  • 허강녕 (농촌진흥청 국립축산과학원 가금과) ;
  • 진선덕 (국립중앙과학관 자연사연구팀) ;
  • 이준헌 (충남대학교 동물자원생명과학과)
  • Received : 2014.10.29
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

Recently, duck meat consumption has been rapidly increased because consumers recognized duck meat for healthy food. In relation to this, Korean duck industry need to develop Korean native duck (KND) breed for both conservation perspective and self-sufficient of the breeding stocks. In this study, 24 microsatellite (MS) markers were investigated for classification of KND and commercial duck (CD) breeds in the Korean market. Using these MS markers, the calculated number of alleles (K), expected heterozygosity (He) values and polymorphic information contents (PIC) were 1~16, 0~0.865 and 0~0.841, respectively. Also, the expected probability of identical values in random individuals (PI), random sib ($PI_{sib}$) and random half-sib ($PI_{half-sib}$) were estimated as $1.64{\times}10^{-16}$, $2.60{\times}10^{-7}$ and $1.30{\times}10^{-12}$, respectively. The results indicated that the expected probabilities of identity powers were enough for the individual identification. However, KND and CD breeds were not fully discriminated well using the 24 MS markers, which may CD and KND has shared same origin or crossbred. Therefore, further studies will be ultimately needed for developing a genetically pure line of KND breed even though the DNA markers used. Finally, these results will provide useful information for individual traceability system in ducks.

최근, 한국의 소비자들이 건강에 대한 관심이 증가하면서 단일불포화 지방산이 풍부해 건강에 긍정적인 영향을 줄 수 있는 오리고기의 수요가 급격하게 증가하고 있다. 하지만 대부분의 종 오리는 수입에 의존하고 있는 실정이기 때문에, 토종오리의 개발 및 보급이 필요한 실정이며, 이는 종자주권의 확립 및 농가 소득 증대에도 매우 필요한 일이라 할 수 있다. 따라서 본 연구에서는 24개의 microsatellite 마커를 확보하였으며, 이들 마커의 대립유전자수는 1~16개, 이형접합도는 0~0.865, 다형성은 0~0.841로 확인되었다. 이들 마커를 이용하여 임의 집단에서 동일개체 출현빈도를 계산한 결과는 임의 집단 $1.64{\times}10^{-16}$, 전형매 집단 $2.60{\times}10^{-7}$, 반형매 집단 $1.30{\times}10^{-12}$으로 높은 개체식별률과 친자확인도를 확인할 수 있었다. 하지만 이들 마커를 이용한 계통분석 결과, 토종오리와 실용오리 집단을 정확하게 구분하기에는 어려운 것으로 확인되었다. 따라서 추가연구를 통해 토종오리의 순종화 및 더 정확한 토종오리와 실용오리 집단 구분이 가능한 마커 개발이 필요할 것으로 사료된다.

Keywords

References

  1. Ayres KL, Overall AD 2004 API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol Ecol Notes 4:315-318. https://doi.org/10.1111/j.1471-8286.2004.00616.x
  2. Bang HT, Na JC, Choi HC, Chae HS, Kang HK, Kim DW, Kim MJ, Suh OS, Park SB, Choi YH 2010 A comparative study on performances and carcass traits in three major meat-type duck strains in Korea. Korean J Poult Sci 37 (4):389-398.
  3. Cheng HH, Crittenden LB 1994 Microsatellite markers for genetic-mapping I the chicken. Poultry Sci 73:539-546. https://doi.org/10.3382/ps.0730539
  4. Dalvit C, DeMarchi M, Cassandro M 2007 Genetic traceability of livestock products : A review. Meat Sci 77:437-449. https://doi.org/10.1016/j.meatsci.2007.05.027
  5. Jin SD, Hoque MR, Seo DW, Paek WK, Kang TH, Kim HK, Lee JH 2014 Phylogenetic analysis between domestic and wild duck species in Korea using mtDNA D-loop sequences. Mol Biol Rep 41:1645-1652. https://doi.org/10.1007/s11033-013-3012-6
  6. Kim HK, Hong EC, Kang BS, Park MN, Seo BY, Choo HJ, Na SH, Bang HT, Seo OS, Hwangbo J 2010 Effect of crossbreeding of Korean native duck and broiler ducks on performance and carcass yield. Korean J Poult Sci 37(3): 229-235. https://doi.org/10.5536/KJPS.2010.37.3.229
  7. Kim HK, Kang, BS, Hwangbo J, Kim CD, Heo KN, Choo HJ, Park DS, S OS, Hong EH 2012 The study on growth performance and carcass yield of meat-type Korean native ducks. Korean J Poult Sci 39(1):45-52. https://doi.org/10.5536/KJPS.2012.39.1.045
  8. Kulikova IV, Zhuravlev YN, McCracken KG 2004 Asymmetric hybridization and sex-biased gene flow between Eastern Spot-billed Ducks (Anas zonorhyncha) and Mallards (A. platyrhynchos) in the Russian far east. The Auk 121(3): 930-949. https://doi.org/10.1642/0004-8038(2004)121[0930:AHASGF]2.0.CO;2
  9. Kook K, Kim JE, Jeong JH, Kim JP, Sun SS, Kim KH, Jeon YT, Jeong KH, Ahn JN, Lee BS, Jeong IB, Yang CJ, Yang JE 2005 Effect of supplemental alkali feldspar-ilite on growth performance and meat quality in broiler ducks. Korean J Poult Sci 32(4):245-254.
  10. Li HF, Zhu WQ, Song WT, Shu JT, Han W, Chen KW 2010 Origin and genetic diversity of Chinese domestic ducks. Mol Phylogenet Evol 57(2):634-640. https://doi.org/10.1016/j.ympev.2010.07.011
  11. Lim HT, Seo BY, Jung EJ, Yoo CK, Zhong T, Cho IC, Yoon DH, Lee JG, Jeon JT 2009 Establishment of a microsatellite marker set for individual, pork brand and product origin identification in pigs. J Anim Sci 51(3):201-206.
  12. Liu K, Muse SV 2005 Power marker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  13. Maak S, Wimmers K, Weigend S, Neumann K 2003 Isolation and characterization 18 microsatellites in the peking duck (Anas platyrhynghos) and their application in other waterfowl species. Mol Ecol Notes 3:224-227. https://doi.org/10.1046/j.1471-8286.2003.00405.x
  14. Marshall T, Slate J, Kruuk L, Pemberton J 1998 Statistical confidence for likelihood based paternity inference in natural populations. Mol Ecol 7:639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  15. MIFAFF 2013 Primary Statistics of Food, Agriculture, Forestry and Fisheries, Korea.
  16. NIAS 1999 Characteristic study of domesticated Mallard duck.
  17. Seo DW, Hoque MR, Choi NR, Sultana H, Park HB, Heo KN, Kang BS, Lim HT, Lee SH, Jo C, Lee JH 2013 Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian-Aust J Ani Sci 26:316-322. https://doi.org/10.5713/ajas.2012.12469
  18. Yinhua H, Jiangfeng T, Xuebo C, Bo T, Xiaoxiang H, Zhaoliang L, Jidong F, Yankun L, Li L, Ke X, Yulong Z, Ning L 2005 Characterization of 35 novel microsatellite DNA markers form the duck (Anas platyrhynchos) genome and cross-amplification in other birds. Genet Sel Evol 37:455-472. https://doi.org/10.1186/1297-9686-37-5-455
  19. Yinhua H, Yonghui Z, Chris SH, Shengqiang H, Jinping H, Changxin W, Ning L 2006 A genetic and cytogenetic map for the duck (Anas platyrhynchos). Genetics 173(1):287-296. https://doi.org/10.1534/genetics.105.053256
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S 2013 MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725-2729. https://doi.org/10.1093/molbev/mst197

Cited by

  1. Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers vol.29, pp.4, 2016, https://doi.org/10.5713/ajas.15.0915