과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- Bangham, A.D., Standish, M.M. and Watkins, J.C. (1965), "Diffusion of univalent ions across the lamellae of swollen phospholipids", J. Mol. Biol., 13(1), 238-252. https://doi.org/10.1016/S0022-2836(65)80093-6
- Bansal, T., Akhtar, N., Jaggi, M., Khar, R.K. and Talegaonkar, S. (2009), "Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation", Drug Discov. Today, 14(21-22), 1067-1074. https://doi.org/10.1016/j.drudis.2009.07.010
- Berg, K., Selbo, P.K., Prasmickaite, L., Tjelle, T.E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, O., Kjolsrud, S., Anholt, H., Rodal, G.H., Rodal, S.K. and Hogset, A. (1999), "Photochemical internalization: a novel technology for delivery of macromolecules into cytosol", Cancer Res., 59(6), 1180-1183.
- Cordon-Cardo, C., O'Brien, J.P., Casals, D., Rittman-Grauer, L., Biedler, J.L., Melamed, M.R. and Bertino, J.R. (1989), "Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites", Proc. Natl. Acad. Sci. USA., 86(2), 695- 698. https://doi.org/10.1073/pnas.86.2.695
- Dachs, G.U., Dougherty, G.J., Stratford, I.J. and Chaplin, D.J. (1996), "Targeting gene therapy to cancer: a review", Oncol. Res., 9(6-7), 313-325.
- Davis, M.E. (2002), "Non-viral gene delivery systems", Curr. Opin. Biotechnol., 13(2), 128-131. https://doi.org/10.1016/S0958-1669(02)00294-X
- Evans, C. and Robbins, P.D. (1995), "Current concepts review: possible orthopaedic applications of gene therapy", J. Bone Joint Surg. Am., 77(7), 1103-1115. https://doi.org/10.2106/00004623-199507000-00021
- Farokhzad, O.C. and Langer, R. (2009), "Impact of nanotechnology on drug delivery", ACS Nano, 3(1), 16-20. https://doi.org/10.1021/nn900002m
- Funhoff, A.M., van Nostrum, C.F., Koning, G.A., Schuurmans-Nieuwenbroek, N.M., Crommelin, D.J. and Hennink, W.E. (2004), "Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH", Biomacromolecules, 5(1), 32-39. https://doi.org/10.1021/bm034041+
- Gillmeister, M.P., Betenbaugh, M.J. and Fishman, P.S. (2011), "Cellular trafficking and photochemical internalization of cell penetrating peptide linked cargo proteins: a dual fluorescent labeling study", Bioconjug. Chem., 22(4), 556-566. https://doi.org/10.1021/bc900445g
- Godbey, W.T., Wu, K.K. and Mikos, A.G. (1999), "Poly (ethylenimine) and its role in gene delivery", J. Control. Release., 60(2), 149-160. https://doi.org/10.1016/S0168-3659(99)00090-5
- Green, J.J., Zhou, B.Y., Mitalipova, M.M., Beard, C., Langer, R., Jaenisch, R. and Anderson, D.G. (2008), "Nanoparticles for gene transfer to human embryonic stem cell colonies", Nano Lett., 8(10), 3126-3130. https://doi.org/10.1021/nl8012665
- Gruenberg, J. and Van der Goot, F.G. (2006), "Mechanisms of pathogen entry through the endosomal compartments", Nat. Rev. Mol. Cell. Bio., 7(7), 495-504. https://doi.org/10.1038/nrm1959
- Hogset, A., Prasmickaite, L., Selbo, P.K., Hellum, M., Engesaeter, B.O., Bonsted, A. and Berg, K. (2004), "Photochemical internalisation in drug and gene delivery", Adv. Drug Deliv. Rev., 56(1), 95-115. https://doi.org/10.1016/j.addr.2003.08.016
- Hogset, A., Prasmickaite, L., Tjelle, T.E. and Berg, K. (2000), "Photochemical transfection: a new technology for light-induced, site-directed gene delivery", Hum. Gene Ther., 11(6), 869-880. https://doi.org/10.1089/10430340050015482
- He, Q., Gao, Y., Zhang, L., Zhang, Z., Gao, F., Ji, X., Li, Y. and Shi, J. (2011), "A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance", Biomater., 32(30), 7711-7720. https://doi.org/10.1016/j.biomaterials.2011.06.066
- Johannes, L. and Decaudin, D. (2005), "Protein toxins: intracellular trafficking for targeted therapy", Gene Ther., 12(18), 1360-1368. https://doi.org/10.1038/sj.gt.3302557
- Kang, H.C. and Bae, Y.H. (2007), "pH-Tunable endosomolytic oligomers for enhanced nucleic acid delivery", Adv. Func. Mater., 17(8), 1263-1272. https://doi.org/10.1002/adfm.200601188
- Kievit, F.M. and Zhang, M. (2011), "Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers", Adv. Mater., 23(36), H217-H247. https://doi.org/10.1002/adma.201102313
- Kwoh, D.Y., Coffin, C.C., Lollo, C.P., Jovenal, J., Banaszczyk, M.G., Mullen, P., Phillips, A., Amini, A., Fabrycki, J., Bartholomew, R.M., Brostoff, S.W. and Cario, D.J. (1999), "Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver", Biochim. Biophys. Acta., 1444(2), 171-190. https://doi.org/10.1016/S0167-4781(98)00274-7
- Lage, H. (2008), "An overview of cancer multidrug resistance: a still unsolved problem", Cell. Mol. Life Sci., 65(20), 3145-3167. https://doi.org/10.1007/s00018-008-8111-5
- Lee, C.S. and Na, K. (2014), "Photochemically triggered cytosolic drug delivery using pH-responsive hyaluronic acid nanoparticles for light-induced cancer therapy", Biomacromolecules, 15(11), 4228-4238. https://doi.org/10.1021/bm501258s
- Lemkine, G.F. and Demeneix, B. (2001), "Polyethylenimines for in vivo gene delivery", Curr. Opin. Mol. Ther., 3(2), 178-182.
- Ling, V. (1992), "P-glycoprotein and resistance to anticancer drugs", Cancer, 69(10), 2603-2609. https://doi.org/10.1002/1097-0142(19920515)69:10<2603::AID-CNCR2820691034>3.0.CO;2-E
- Madeira, C., Mendes, R.D., Ribeiro, S.C., Boura, J.S., Aires-Barros, M.R., da Silva, C.L. and Cabral, J.M. (2010), "Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy", J. Biomed. Biotechnol., 2010, 12, DOI: 10.1155/2010/735349.
- Marklein, R.A. and Burdick, J.A. (2010), "Controlling stem cell fate with material design", Adv. Mater., 22(2), 175-189. https://doi.org/10.1002/adma.200901055
- Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J.I. and Nel, A.E. (2010), "Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line", ACS Nano, 4(8), 4539-4550. https://doi.org/10.1021/nn100690m
- MuEller, R.H., MaEder, K. and Gohla, S. (2000), "Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art", Eur. J. Pharm. Biopharm., 50(1), 161-177. https://doi.org/10.1016/S0939-6411(00)00087-4
- Nishiyama, N., Iriyama, A., Jang, W.D., Miyata, K., Itaka, K., Inoue, Y., Takahashi, H., Yanagi, Y., Tamaki, Y., Koyama, H. and Kataoka, K. (2005), "Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer", Nat. Mater., 4(12), 934-941. https://doi.org/10.1038/nmat1524
- Nishiyama, N., Arnida, Jang, W.D., Date, K., Miyata, K. and Kataoka, K. (2006), "Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer", J. Drug Target., 14(6), 413-424. https://doi.org/10.1080/10611860600834508
- Otani, K., Yamahara, K., Ohnishi, S., Obata, H., Kitamura, S. and Nagaya, N. (2009), "Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles", J. Control. Release, 133(2), 146-153. https://doi.org/10.1016/j.jconrel.2008.09.088
- Park, H., Park, W. and Na, K. (2014), "Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer", Biomater., 35(27), 7963-7969. https://doi.org/10.1016/j.biomaterials.2014.05.063
- Park, J.S., Yang, H.N., Woo, D.G., Jeon, S.Y., Do, H.J., Lim, H.Y., Kim, J.H. and Park, K.H., (2011), "Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles", Biomater., 32(14), 3679-3688. https://doi.org/10.1016/j.biomaterials.2011.01.063
- Park, S. and Na, K. (2012), "The transfection efficiency of photosensitizer-induced gene delivery to human MSCs and internalization rates of EGFP and Runx2 genes", Biomater., 33(27), 6485-6494. https://doi.org/10.1016/j.biomaterials.2012.05.040
- Park, S. Park, W. and Na, K. (2013), "Photo-activatable ternary complex based on a multifunctional shielding material for targeted shRNA delivery in cancer treatment", Biomater., 34(35), 8991-8999. https://doi.org/10.1016/j.biomaterials.2013.08.012
- Park, W. and Na, K. (2015), Advances in the synthesis and application of nanoparticles for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
- Park, W., Yang, H.N., Ling, D., Yim, H., Kim, K.S., Hyeon, T., Na, K. and Park, K.H. (2014), "Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking", Biomater., 35(25), 7239-7247. https://doi.org/10.1016/j.biomaterials.2014.05.010
- Pastan, I., Hassan, R., Fitzgerald, D.J. and Kreitman, R.J. (2006), "Immunotoxin therapy of cancer", Nat. Rev. Cancer, 6(7), 559-565. https://doi.org/10.1038/nrc1891
- Probst, C.E., Zrazhevskiy, P., Bagalkot, V. and Gao, X. (2013), "Quantum dots as a platform for nanoparticle drug delivery vehicle design", Adv. Drug Deliv. Rev., 65(5), 703-718. https://doi.org/10.1016/j.addr.2012.09.036
- Robey, R.W., To, K.K., Polqar, O., Dohse, M., Fetsch, P., Dean, M. and Bates, S.E. (2009), "ABCG2: a perspective", Adv. Drug Deliv. Rev., 61(1), 3-13. https://doi.org/10.1016/j.addr.2008.11.003
- Rossi, F. and Cattaneo, E. (2002), "Neural stem cell therapy for neurological diseases: dreams and reality", Nat. Rev. Neurosci., 3(5), 401-409. https://doi.org/10.1038/nrn809
- Segers, V.F. and Lee, R.T. (2008), "Stem-cell therapy for cardiac disease", Nature, 451(7181), 937-942. https://doi.org/10.1038/nature06800
- Selbo, P.K., Weyergang, A., Eng, M.S., Bostad, M., Maelandsmo, G.M., Hogset, A. and Berg, K. (2012), "Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug", J. Control. Release, 159(2), 197-203. https://doi.org/10.1016/j.jconrel.2012.02.003
- Selbo, P.K., Weyergang, A., Hogset, A., Norum, O.J., Berstad, M.B., Vikdal, M. and Berg, K. (2010), "Photochemical internalization provides time-and space-controlled endolysosomal escape of therapeutic molecules", J. Control. Release, 148(1), 2-12. https://doi.org/10.1016/j.jconrel.2010.06.008
- Varkouhi, A.K., Scholte, M., Storm, G. and Haisma, H.J. (2011), "Endosomal escape pathways for delivery of biologicals", J. Control. Release, 151(3), 220-228. https://doi.org/10.1016/j.jconrel.2010.11.004
- Wagner, V., Dullaart, A., Bock, A.K. and Zweck, A. (2006), "The emerging nanomedicine landscape", Nat. Biotechnol., 24(10), 1211-1218. https://doi.org/10.1038/nbt1006-1211
- Whitehead, K.A., Langer, R. and Anderson, D.G. (2009), "Knocking down barriers: advances in siRNA delivery", Nat. Rev. Drug Discov., 8(2), 129-138. https://doi.org/10.1038/nrd2742
- Yen, H.C., Cabral, H., Mi, P., Toh, K., Matsumoto, Y., Liu, X., Koori, H., Kim, A., Miyazaki, K., Miura, Y., Nishiyama, N. and Kataoka, K. (2014), "Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in Vivo chemotherapy", ACS nano, 8(11), 11591-11602. https://doi.org/10.1021/nn504836s
- Yip, W.L., Weyergang, A., Berg, K., Tonnesen, H.H. and Selbo, P.K. (2007), "Targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells", Mol. Pharm., 4(2), 241-251. https://doi.org/10.1021/mp060105u
- Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S. and Farokhzad, O.C. (2007), "Nanoparticles in medicine: therapeutic applications and developments", Clin. Pharmacol. Ther., 83(5), 761-769.
- Zhang, X. and Godbey, W.T. (2006), "Viral vectors for gene delivery in tissue engineering", Adv. Drug Deliv. Rev., 58(4), 515-534. https://doi.org/10.1016/j.addr.2006.03.006
- Hui, Z., He, Z.G., Zheng, L., Li, G.Y., Shen, S.R. and Li, X.L. (2007), "Studies on polyamidoamine dendrimers as efficient gene delivery vector", J. Biomater. Appl., 22(6), 527-544. https://doi.org/10.1177/0885328207080005
- Zhou, W. and Freed, C.R. (2009), "Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells", Stem cells, 27(11), 2667-2674. https://doi.org/10.1002/stem.201