DOI QR코드

DOI QR Code

Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET

50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode

  • 투고 : 2015.01.02
  • 심사 : 2015.03.19
  • 발행 : 2015.03.31

초록

본 논문에서는 U-MOSFET 내부의 기생 body 다이오드(PN diode)를 쇼트키 body 다이오드(Schottky body diode)로 대체한 50V급 전력 U-MOSFET을 제안하였다. 쇼트키 다이오드는 PN 다이오드와 비교 시, 역 회복 손실(reverse recovery loss)을 감소시킬 수 있는 장점을 가지고 있다. 따라서 전력 MOSFET의 기생 body 다이오드를 쇼트키 body 다이오드를 대신함으로써 역 회복 손실을 최소화 할 수 있다. 제안된 쇼트키 body 다이오드(Schottky body diode) U-MOSFET(SU-MOS)를 conventional U-MOSFET(CU-MOS)와 전기적 특성을 비교한 결과, 전달(transfer) 및 출력(output)특성, 항복(breakdown)전압 등 정적(static) 특성의 변화 없이 감소된 역 회복 손실을 얻을 수 있었다. 즉, 쇼트키 다이오드의 폭(width)이 $0.2{\mu}m$, 쇼트키 장벽 높이(Schottky barrier height)가 0.8eV일 때 첨두 역전류(peak reverse current)는 21.09%, 역 회복 시간(reverse recovery time)은 7.68% 감소하였고, 성능지수(figure of merit(FOM))는 35% 향상되었다. 제안된 소자의 특성은 Synopsys사의 Sentaurus TCAD를 사용하여 분석되었다.

In this paper, 50V power U-MOSFET which replace the body(PN) diode with Schottky is proposed. As already known, Schottky diode has the advantage of reduced reverse recovery loss than PN diode. Thus, the power MOSFET with integrated Schottky integrated can minimize the reverse recovery loss. The proposed Schottky body diode U-MOSFET(SU-MOS) shows reduction of reverse recovery loss with the same transfer, output characteristic and breakdown voltage. As a result, 21.09% reduction in peak reverse current, 7.68% reduction in reverse recovery time and 35% improvement in figure of merit(FOM) are observed when the Schottky width is $0.2{\mu}m$ and the Schottky barrier height is 0.8eV compared to conventional U-MOSFET(CU-MOS). The device characteristics are analyzed through the Synopsys Sentaurus TCAD tool.

키워드

참고문헌

  1. Catania, M.F, Frisina, F, Tavolo, N, Ferla, G, Coffia, S, and Campisano, Salvatore Ugo, "Optimization of the tradeoff between switching speed of the internal diode and on-resistance in gold- and platinum-implanted power metal-oxide-semiconductor devices", IEEE Transactions on Electron Devices, vol. 39, issue 12, pp. 2745-2749, 1992 https://doi.org/10.1109/16.168728
  2. B. Jayant Baliga, and Edmund Sun, "Comparison of Gold, Olatinum, and Electron Irradiation for Controlling Lifetime in Power Rectifiers", IEEE Transactions on Electron Devices, vol. 24, issue 6, pp. 685-688, June 1977 https://doi.org/10.1109/T-ED.1977.18803
  3. Matthew D. Miller, " Differences Between Platinum-and Gold-Doped Silicon Power Devices", IEEE Trans. Electron Devices, vol. 23, no. 12, pp. 1279-1283, Aug 2005
  4. Xu Cheng, Johnny K. O. Sin, Baowei Kang, Chuguang Feng, Yu Wu, and Xingming Liu, "Fast reverse recovery body diode in high-voltage VDMOSFET using cell-distributed Schottky contacts", IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1422-1425, May 2003 https://doi.org/10.1109/TED.2003.813226
  5. Calafut D., "Trench power MOSFET lowside switch with optimized integrated Schottky diode", Power Semiconductor Devices and ICs, 2004., pp. 397-400, 2004
  6. B. J. Baliga, "Fundamentals of Power Semiconductor Devices. 1st ed.", New York: Springer, 2008
  7. Synopsys, Inc., "Two-dimensional Process and Device simulation of Trench-Gate NMOS Power Device Using TCAD Sentaurus", synopsys Inc., Mountain View, CA, USA, 2013
  8. Y. Wang, W. N. Jiao, H. F. Hu, Y. T. Liu and J. Gao, "Split-Gate-Enhanced Power UMOSFET With Soft Reverse Recovery", IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 2084-2089, June 2013 https://doi.org/10.1109/TED.2013.2257789