DOI QR코드

DOI QR Code

Proteomics를 이용한 콩의 발아 전 침종처리에 따른 단백질 발현 양상 비교 분석

Characterization of Protein Function and Differential Protein Expression in Soybean under Soaking Condition

  • 조성우 (국립식량과학원 작물육종과) ;
  • 김태선 (충북대학교 식물자원학과) ;
  • 권수정 (충북대학교 식물자원학과) ;
  • ;
  • 이철원 (충북대학교 식물자원학과) ;
  • 김홍식 (충북대학교 식물자원학과) ;
  • 우선희 (충북대학교 식물자원학과)
  • Cho, Seong-Woo (Crop Breeding Research Division, NICS, RDA) ;
  • Kim, Tae-Sun (Department of Crop Science, Chungbuk National University) ;
  • Kwon, Soo-Jeong (Department of Crop Science, Chungbuk National University) ;
  • Roy, Swapan Kumar (Department of Crop Science, Chungbuk National University) ;
  • Lee, Chul-Won (Department of Crop Science, Chungbuk National University) ;
  • Kim, Hong-Sig (Department of Crop Science, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
  • 투고 : 2015.03.10
  • 심사 : 2015.03.20
  • 발행 : 2015.03.31

초록

침종 기간과 침종 후 발아의 유무에 따른 단백질 발현을 이차원전기영동을 이용하여 단백질 발현양상을 확인하고 비교 분석한 결과, 침종 기간과 침종 후 발아의 유무에 따른 단백질 발현 양상은 전반적으로 매우 유사하였으며, 주요 단백질의 발현에는 차이가 없었다. 침종 기간에 따른 품종별 단백질 발현 양상은 침종 기간이 길어짐에 따라 단백질 발현정도가 점차 증가되는 것을 확인할 수 있었다. 공시품종들 중 황금콩, 단엽콩, Peking이 다른 품종들에 비하여 침종 4일후에 단백질 발현정도가 급격히 증가하는 것을 알 수 있었다. 침종 후 발아 유무에 따른 단백질 발현양상은 소수의 단백질 spot들을 제외하고는 전반적으로 모든 공시 품종들에서 발아한 종자에서의 단백질 발현정도는 미발아 종자에서보다 높게 확인되었다.

Soybean is very useful crop to supply vegetable protein for human. However, cultivation arear of this economically important crop is gradually diminished in upland field. Hence, cultivation area of soybean is increased in paddy field. During the growth duration of soybean, excessive moisture injury is serious problem for sustainable production and supply. We investigated protein expression according to different period of seed soaking and germination after seed soaking. For comparison on expression of protein according to different condition, we performed two-dimensional electrophoresis. After electrophoresis analysis, we selected differentially expressed protein spots according to different condition such as soaking period and germination after soaking to identify protein function by using MALDI-TOF. Results revealed that pattern of expression of protein according to soaking period and germination after soaking were generally not different in major spots. However, degree of expression of protein in some protein spots was increased in accordance with decrease of soaking period. Especially, in Hwangkeum-Kong, Danyeop-Kon, and Pecking, the degree of expression of protein was remarkably increased for 4 days after soaking. But, according to germination after soaking, degree of expression of protein in germinated seeds of all cultivars was higher than un-germinated seeds. In results of MALDI-TOF analysis, specific proteins were identified by different soaking period such as Allergen Gly m Bd 28K, P24 oleosin isoform B. Also, in accordance with germination, degree of protein expression of the related protein, Gibberellin was increased in un-germinated seeds of Iksan-Kong. In ungerminated seeds of Sinpaldal-kong, proteins were identified as down-regulated by soaking such as ATP binding and Inhibitor II', proteinase.

키워드

참고문헌

  1. Acton, T. B., H. Zhong, and A. K. Vershon. 1997. DNA-binding specificity of Mcm1: operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein. Mol. Cell. Biol. 17 : 1881-1889. https://doi.org/10.1128/MCB.17.4.1881
  2. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem. 72 : 248-254.
  3. Bruce, S., P. C. Andersen, and R. C. Ploetz. 1992. Responses of fruit crops to flooding. Horticultural Reviews. 13 : 257-313.
  4. Callis, J., J. A. Raasch, and R. D. Vierstra. 1990. Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. The J. of Biological Chemistry. 265 : 12486-12493.
  5. Cho, S. W., S. J. Kwon, S. K. Roy, H. S. Kim, C. W. Lee, and S. H. Woo. 2014. A systematic proteome study of seed storage proteins from two soybean genotypes. Korean J. Crop Sci. 59 : 359-363. https://doi.org/10.7740/kjcs.2014.59.3.359
  6. Christie, P. J., M. Hahn, and V. Walbot. 1991. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. 1991. Plant Physiol. 95 : 699-706. https://doi.org/10.1104/pp.95.3.699
  7. Coyle, P., J. C. Philcox, L. C. Carey, and A. M. Rofe. 2002. Metallothionein: The multipurpose protein. Cell. Mol. Life Sci. 59 : 627-647. https://doi.org/10.1007/s00018-002-8454-2
  8. Crawford, R. M. M. and M. McManmon. 1971. A metabolic theory of flooding tolerance: the significance of enzyme distribution and behaviour. New Phytol. 70 : 299-306. https://doi.org/10.1111/j.1469-8137.1971.tb02529.x
  9. Heydecker, W., P. I. Orphanous, and R. S. Chetram. 1969. The importance of air supply during seed germination. Proc. Int. Seed Test. Ass. 34 : 297-403.
  10. Harrison, S. C. 1991. A structural taxonomy of DNA-bindng domains. Nature. 353 : 715-719. https://doi.org/10.1038/353715a0
  11. Higgins, C. F., I. D. Hiles, G. P. C. Salmond, D. R. Gill, J. A. Downie, I. J. Evans, I. B. Holland, L. Gray, S. D. Buckel, A. W. Bell, and M. A. Hermodson. 1986. Nature. 323 : 448-450. https://doi.org/10.1038/323448a0
  12. Kader, J. C. Lipid-transfer proteins in plants. 1996. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 : 627-654. https://doi.org/10.1146/annurev.arplant.47.1.627
  13. Kagawa, H. and H. Hirano. 1989. Sequence of a cDNA encoding soybean basic 7S globulin. Nucleic Acids Res. 17 : 8868. https://doi.org/10.1093/nar/17.21.8868
  14. Krishnan, H. B. 2002. Evidence for accumulation of the ${\beta}$-Subunit of ${\beta}$-conglycinin in soybean [Glycine max (L) Merr.] embryonic axes. Plant Cell Rep. 20 : 869-875. https://doi.org/10.1007/s00299-001-0400-5
  15. Lemke-Keyes, C. A. and M. M. Sachs. 1989. Anaerobic tolerant null: a mutant that allows Adh1 nulls to survive anaerobic treatment. The Journal of Heredity. 80(4) : 316-319.
  16. Li, J., M. Goldschmidt-Clermont, and M. P. Timko. 1993. Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. 1993. The Plant Cell. 5 : 1817-1829. https://doi.org/10.1105/tpc.5.12.1817
  17. Loer, D. S. and E. M. Herman. 1993. Cotranslational integration of soybean (Glycine max) oil body membrane protein oleosin into microsomal membranes. Plant Physiol. 101 : 993-998.
  18. Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO J. 4 : 1609-1614.
  19. O'Farrell, P. F. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250 : 4007-4021.
  20. Pollock, B. M. and E. E. Ross. 1972. Seed and seedling vigour. In: Kozlowski (Editor), Seed Biology I. Academic Press, New York and London. 313-387.
  21. Rahman, Md. M., Md. M. Hossain, Md. P. Anwar, and A. S. Juraimi. 2011. Plant density influence on yield and nutritional quality of soybean seed. Asian J. of Plant Sci. 10 : 125-132. https://doi.org/10.3923/ajps.2011.125.132
  22. STATISTICS KOREA http://www.kostat.go.kr, http://www.index.go.kr/
  23. Tsuji, H., N. Bando, M. Hiemori, R. Yamanishi, M. Kimoto, K. Nishikawa, and T. Ogawa. 1997. Purification and characterization of soybean allergen Gly m Bd 28K. Biosci. Biotech. Biochem. 61 : 942-947. https://doi.org/10.1271/bbb.61.942

피인용 문헌

  1. 콩 침수 스트레스에 대한 식물생장조절물질 처리 효과 vol.62, pp.4, 2015, https://doi.org/10.7740/kjcs.2017.62.4.325