DOI QR코드

DOI QR Code

Evasive Behavior of the Red Flour Beetle, Tribolium castaneum, against Chlorine Dioxide and Its Suppression by Heat Treatment

이산화염소에 대한 거짓쌀도둑거저리의 회피행동과 이를 억제하는 열처리 효과

  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University) ;
  • Kumar, Sunil (Department of Bioresource Sciences, Andong National University) ;
  • Rahman, M. Mahbubur (Department of Bioresource Sciences, Andong National University) ;
  • Kwon, Hyeok (Department of Life Sciences and Biotechnology, Korea University) ;
  • Chun, Yongsik (Institute of Life Science and Natural Resources, Korea University) ;
  • Na, Jahyun (Institute of Life Science and Natural Resources, Korea University) ;
  • Kim, Wook (Department of Life Sciences and Biotechnology, Korea University)
  • Received : 2015.05.13
  • Accepted : 2015.06.02
  • Published : 2015.09.01

Abstract

Chlorine dioxide ($ClO_2$) can be used as a fumigant to kill insects. However, some insects can exhibit an evasive behavior from chlorine dioxide. This evasive behavior decreases the efficiency of the insecticidal activity of chlorine dioxide. This study tested a hypothesis that heat treatment suppresses the evasive behavior and synergizes the control efficacy of chlorine dioxide. Chlorine dioxide fumigation killed the red flour beetle, Tribolium castaneum, under direct exposure condition to the chemical for 12 h with median lethal concentrations of 383.67 ppm (153.63 - 955.78 ppm: 95% confidence interval) for larvae and 397.75 ppm (354.46 - 446.13 ppm: 95% confidence interval) for adults. However, when they were treated with enough diet flour, they exhibited an evasive behavior by entering the diet, which significantly decreased the control efficacy of the fumigant. To clarify the evasive behavior, the choice test of the adults were performed in Y tube arena. The test adults significantly avoided the diet treated with chlorine dioxide, while the antennatectomized adults lost the avoidance behavior. Heat treatment using $46^{\circ}C$ for 6 h killed only 10% or less of T. castaneum. Interestingly, most adults were observed to come out of the diet under the heat treatment. Chlorine dioxide treatment even at 400 ppm for 6 h did not kill any T. castaneum. However, the combined treatment of chlorine dioxide with the heat treatment for 6 h resulted in 95% mortality. These results indicated that heat treatment suppressed the evasive behavior of T. castaneum and synergized the control efficacy of the chlorine dioxide fumigant.

이산화염소($ClO_2$) 훈증제는 살충효과를 나타낸다. 그러나 일부 곤충은 이산화염소에 대해 회피행동을 보여, 이 훈증제에 대한 방제효율을 크게 떨어뜨리고 있다. 본 연구는 이를 해결하기 위해 이산화염소 처리에 열처리를 추가하여 곤충의 이산화염소에 대한 회피행동을 줄여 살충효과를 극대화하는 전략을 세웠다. 이산화염소 훈증 처리는 거짓쌀도둑거저리(Tribolium castaneum)에 대해 살충효과를 주었으며, 시험 곤충이 노출된 조건에서 12 시간 처리할 때 유충에 대해서 383.67 ppm (153.63 - 955.78 ppm: 95% 신뢰구간), 성충에 대해서 397.75 ppm (354.46 - 446.13 ppm: 95% 신뢰구간)의 반수치사농도를 나타냈다. 그러나 먹이인 밀가루를 충분히 제공한 상태에서 이산화염소를 처리하면, 처리 약제에 반응하여 시험 곤충이 먹이 속으로 들어가는 회피행동을 보이면서 방제효과는 크게 낮아졌다. Y 튜브를 이용한 이 곤충의 먹이 선호성 행동을 분석한 결과 거짓쌀도둑거저리 성충은 이산화염소가 처리된 먹이를 회피하는 행동을 보였다. 그러나 촉각을 제거한 경우 이러한 회피행동은 둔화 되었다. 거짓쌀도둑거저리에 6 시간 동안 $46^{\circ}C$ 열처리를 하면 살충효과는 10% 이하로 낮지만, 처리된 성충들이 먹이 밖으로 나와 있는 것을 관찰하였다. 반면 400 ppm의 이산화염소를 단독으로 6 시간 처리한 결과 회피행동에 따라 전혀 살충효과를 보이지 않았다. 그러나 $46^{\circ}C$ 열처리와 400 ppm의 이산화염소를 병행하여 6 시간 처리한 결과 살충효과는 95%로 크게 증가하였다. 따라서 열처리는 거짓쌀도둑거저리의 이산화염소에 대한 회피행동을 억제하여 살충효과를 증가시켰다.

Keywords

References

  1. Aung, E.E., Ueno, M., Zaitsu, T., Furukawa, S., Kawaguchi, Y., 2015. Effectiveness of three oral hygiene regimes on oral malodor reduction: a randomized clinical trial. Trials 16, 31. https://doi.org/10.1186/s13063-015-0549-9
  2. Bang, J., Hing, A., Kim, H., Beuchat, L.R., Rhee, M.S., Kim, Y., Ryu, J.H., 2014. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. Int. J. Food Microbiol. 191, 129-134. https://doi.org/10.1016/j.ijfoodmicro.2014.09.014
  3. Butz, P., Tauscher, B., 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19, 161-164. https://doi.org/10.1111/j.1745-4549.1995.tb00285.x
  4. Carpenter, A., Potter, M., 1994. Controlled atmospheres. pp. 171-198, In Quarantine treatments for pests and food plants, eds. by J.L. Sharp, G.J. Hallman. Westview, Boulder, CO, USA.
  5. Choi, K.M., Lee, M.H., Han, M.J., Ahn, S.B., Hong, K.J., 1996. Stored product insect pests with pictorial key to larvae. National Institute of Agricultural Science and Technology, Suwon, Korea.
  6. Gibbs, S.G., Lowe, J.J., Smith, P.W., Hewlett, A.L., 2012. Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33, 495-499. https://doi.org/10.1086/665320
  7. Hinenoya, A., Awasthi, S.P., Yasuda, N., Shima, A., Morino, H., Koizumi, T., Fukuda, T., Miura, T., Shibata, T., Yamasaki, S., 2015. Chlorine dioxide is a superior disinfectant against multi- drug resistant Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Jpn. J. Infect. Dis. In press.
  8. Hollingsworth, R.G., Armstrong, J.W., 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98, 289-298. https://doi.org/10.1093/jee/98.2.289
  9. Ikediala, J.N., Tang, J., Neven, L.G., Drake, S.R., 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16, 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
  10. Jin, M., Shan, J., Chen, Z., Guo, X., Shen, Z., Qiu, Z., Xue, B., Wang, Y., Zhu, D., Wang, X., Li, J., 2013. Chlorine dioxide inactivation of enterovirus 71 in water and its impact on genomic targets. Environ. Sci. Technol. 47, 4590-4597. https://doi.org/10.1021/es305282g
  11. Kells, S.A., Mason, L.J., Maier, D.E., Woloshuck, C.P., 2001. Efficacy and fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37, 371-383. https://doi.org/10.1016/S0022-474X(00)00040-0
  12. Khan, A., Islam, M., Rahman, M., Zaman, T., Haque, M., 2014. Pesticidal and pest repellency activities of a plant derived triterpenoid $2\alpha$,$3\beta$,$21\beta$.23.28-pentahydroxyl 12-oleanene against Tribolium castaneum. Biol. Res. 47, 68. https://doi.org/10.1186/0717-6287-47-68
  13. Kim, H.G., Margolies, D., Park, Y., 2015. The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum. J. Insect Physiol. 76, 47-55. https://doi.org/10.1016/j.jinsphys.2015.03.008
  14. Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pesti. Biochem. Physiol. In press.
  15. Liu, Y.B., 2003. Effects of vacuum and controlled atmosphere treatments on insect mortality and lettuce quality. J. Econ. Entomol. 96, 1100-1107. https://doi.org/10.1093/jee/96.4.1100
  16. Na, J.H., Nam, Y., Ryoo, M.I., Chun, Y.S., 2006. Control of food pests by $CO_2$ modified atmosphere: effects of packing materials and exposure time on the mortality of Tribolium castaneum and Plodia interpunctella. Kor. J. Appl. Entomol. 45, 363-369.
  17. Nam, H., Seo, H.S., Bang, J., Kim, H., Beuchat, L.R., Ryu, J.H., 2014. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus attached to and in a biofilm on stainless steel. Int. J. Food Microbiol. 188, 122-127. https://doi.org/10.1016/j.ijfoodmicro.2014.07.009
  18. Nelson, S.O., 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39, 1475-1484. https://doi.org/10.13031/2013.27641
  19. Neven, L.G., Drake, S.R., 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20, 107-114. https://doi.org/10.1016/S0925-5214(00)00110-1
  20. Paull, R.E., Armstrong, J.W., 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
  21. Sanekata, T., Fukuda, T., Miura, T., Morino, H., Lee, C., Maeda, K., Araki, K., Otake, T., Kawahata, T., Shibata, T., 2010. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol Sci. 15, 45-49. https://doi.org/10.4265/bio.15.45
  22. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
  23. Sharp, J.L., Hallman, G.J., 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO, USA.
  24. Son, Y., Kim, Y., Kim, Y., 2010. Control effect of a stored grain insect pest, Tribolium castaneum, by 'CATTS' postharvest treatment. Kor. J. Appl. Entomol. 49, 363-369. https://doi.org/10.5656/KSAE.2010.49.4.363
  25. Sun, X., Bai, J., Ference, C., Wang, Z., Zhang, Y., Narciso, J., Zhou, K., 2014. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J. Food Prot. 77, 1127-1132. https://doi.org/10.4315/0362-028X.JFP-13-554
  26. Taneja, S., Mishra, N., Malik, S., 2014. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: an in vitro study. J. Conserv. Dent. 17, 541-545. https://doi.org/10.4103/0972-0707.144590
  27. Tang, J., Ikediala, J.N., Wang, S., Hansen, J.D., Cavalieri, R.P., 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145. https://doi.org/10.1016/S0925-5214(00)00171-X
  28. USDA. 2005. Integrated management of insect pests in stored grain and in processed grain products. Annual Project Report: the Biological Research Unit, Agricultural Research Service, United States Department of Agriculture.
  29. Vlad, S., Anderson, W.B., Peldszus, S., Huck, P.M., 2014. Removal of the cyanotoxin-a by drinking water treatment processes: a review. J. Water Health 12, 601-617. https://doi.org/10.2166/wh.2014.018
  30. Wang, S., Tang, J., Johnson, J.A., Micham, E., Hansen, J.D., 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26, 265-273. https://doi.org/10.1016/S0925-5214(02)00048-0
  31. Wua, Y., Chenb, H.P., Wei, J.Y., Yang, K., Tian, Z.F., Li, X.L., Wang, P.J., Wang, C.F., Du, S.S., Cai, Q., 2014. Repellent constituents of essential oil from Citrus wilsonii stem barks against Tribolium castaneum. Nat. Prod. Commun. 9, 1515-1518.