DOI QR코드

DOI QR Code

Mineralogical Characteristic and Occurrence of Tremolite and Actinolite in the Dong-A mine, Korea

동아광산 일대 투각섬석과 양기석의 산출상태 및 광물학적 특성 연구

  • Received : 2015.12.04
  • Accepted : 2015.12.18
  • Published : 2015.12.30

Abstract

As results of X-ray diffraction analysis, samples of asbestos and soil were composed maily of dolomite ($CaMg(Co_3)_2$, tremolite ($Ca_2Mg_5Si_{18}O_{22}(OH)_2$), actinolite ($Ca(Mg,\;Fe)_6Si_8O_{22}(OH)_2$), talc ($Mg_3Si_4O_{10}(OH)_2$), calcite ($CaCO_3$) and small amounts of quartz ($SiO_2$) and clay minerals. The average size of asbestos fibers was about $100{\mu}m$ and maximum of some asbestos was $250.0{\mu}m$ in length. The aspect ratio of asbestos fiber were over 3 : 1 and inclined extinction in the range of $8.0-19.5^{\circ}$. Single isolated fragments of asbestos are probably fiber and acicula form in crystal edge along the cleavage plane. Tremolite that composed main asbestos mineral in rock and soil around Dong-a mine is higher content of Fe than actinolite asbestos.

동아광산에서 채취한 암석 시료의 X-선 회절분석 결과 주 구성광물은 백운석(Dolomite : $CaMg(Co_3)_2$, 투각섬석(Tremolite : $Ca_2Mg_5Si_{18}O_{22}(OH)_2$), 활석(Talc : $Mg_3Si_4O_{10}(OH)_2$), 방해석(Calcite : $CaCO_3$)이며, 소량의 석영(Quartz : $SiO_2$)을 포함하고 있다. 편광현미경 관찰 결과 종횡비는 일반적으로 정의하는 3 : 1의 수치보다 높은 값을 나타내며 신장방향에 대한 소광각은 $8.0-19.5^{\circ}$의 범위로 사소광을 나타낸다. 주사전자현미경 관찰 결과 석면의 장경은 $5{\mu}m$ 이상이고 최대 $250{\mu}m$ 정도이며 종횡비는 3 : 1 정도이다. 암석시료에서 나타나는 석면결정은 벽개면을 따라 성장하고 있으며 결정의 끝부분이 침상형태를 나타낸다. 에너지분산분광분석결과 투각섬석이 주 구성광물인 시료는 대체로 Fe의 함량이 높게 나타난다.

Keywords

References

  1. Addison, J. and McConnell, E.E. (2008) A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles. Regulatory Toxicology and Pharmacology, 52, 187-199. https://doi.org/10.1016/j.yrtph.2007.10.001
  2. Amandus, H.E., Althouse, R., and Wheeler, R. (1987) The morbidity and mortality of vemiculite miners and millers exposed to tremolite-actinolite; PartII. American Journal of Industrial Medicine, 11, 15-26. https://doi.org/10.1002/ajim.4700110103
  3. Browne, K. and Murray, R. (1990) Asbestos and the Romans. Lancet 336-445.
  4. Enterline, P.E. and Hendeson, V.L. (1987) Geographic patterns for pleural mesothelioma deaths in the United states. Journal of the National Cancer Institute (JNCI), 79, 31-37.
  5. Frumkin, H. and Berlin. J. (1988) Asbestos exposure and gastrointestinal malignancy review and meta-analysis. American Journal of Industrial Medicine, 14, 79-95. https://doi.org/10.1002/ajim.4700140110
  6. Guthrie, G.D. and Mossman, B.T. (1993) Health Effects of Mineral Dusts, Reviews in Mineralogy, Vol. 28. Mineralogical Society of America. Washington, DC. pp. 555-576.
  7. Hwang, J.Y., Choi, J.B., Jeong, K.Y., Oh, J.H., Choi, Y.H., and Lee, J.H. (2013) Occurrence and Mineralogical Characteristics of Dolomite Ores from South Korea. Journal of Mineralogical Society of Korea, 26, 87-99. https://doi.org/10.9727/jmsk.2013.26.2.87
  8. Jeong, K.Y. and Choi, J.B. (2012) Morphological Diversity of Tremolite-actinolite Series Amphiboles with Implications to the Evaluation of Naturally Occurring Asbestos. Journal of Mineralogical Society of Korea, 25, 95-104. https://doi.org/10.9727/jmsk.2012.25.2.095
  9. Klerk, N.H., Musk, A.W., Williams, V., Filion, P.R., and Whitaker, D. (1996) Comparison of measures of exposure to asbestos in former crocidolite workers from Wittenoon Gorge, W. Australia. American Journal of Industrial Medicine, 30, 579-587. https://doi.org/10.1002/(SICI)1097-0274(199611)30:5<579::AID-AJIM5>3.0.CO;2-O
  10. Langer, A.M. Rohl. A.N., Wolff, M.S., and Selikoff, I.J. (1979) Asbestos fibrous minerals and acicular cleabage framents: nomenclature and biological properties. In: Dement, J.M., Lemen, R.A. (Eds.), Dust and Disease society for Occupational and Environmental Health. Pathox Publishers, Illinois, pp. 1-22.
  11. Lee, M.S. and Park, B.S. (1965) Explanatory text of the geological map of Hwanggang-ni sheet, Geological Survey of Korea, 74p.
  12. Langer. A.M. and Addison. J. (1991) Distinguishing between amphibole asbestos fibers and elongate cleavage framents of their non-asbestos analogues. In: Brown, R.C., Hoskins, J.A., Johnson, N.F. (Eds.), Mechanisms in fibre carcinogenesis. Plenum Press, New York, pp. 253-267.
  13. Maclure, M. (1987) Asbestos and renal adenocarcinoma: a case-control study. Environmental Research, 42, 353-361. https://doi.org/10.1016/S0013-9351(87)80200-1
  14. Seidman, H., Selikoff, I.J., and Hammond, E.C. (1979) Short-term asbestos work exposure and long-term observation. Annals of the New York Academy of Sciences, 330, 31-89. https://doi.org/10.1111/j.1749-6632.1979.tb18707.x
  15. Song, S.H. and Song, Y.S. (2001) Mineralogy and Geochemistry of Ultramafic Rocks from the Singok Area, Western Part of Chungnam. Econimic Environmental Geology, 34, 395-415.
  16. Song, S.H., Lim, H.J., and Lee, W.S. (2013) Genetic Differences of Two Asbestos Mines, Boryoung Area. Econimic Environmental Geology, 46, 165-178. https://doi.org/10.9719/EEG.2013.46.2.165
  17. Stanton, M.F., Layard, M., and Tegeris, A. (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. Journal of the National Cancer Institute (JNCI), 67, 965-975.
  18. Woo, Y.K. and Suh, M.C. (2000) Petrological Study on the Ultramafic Rocks in Choongnam Area. Journal of Korea Earth Sciences Society, 21, 323-336.
  19. Yoon, K.T., Hwang, J.Y., Oh, J.H., and Lee, H.M. (2010) Characteristics of Tremolite Asbestos from Abandoned Asbestos Mines in Boryeong Area, Chungnam. Journal of Mineralogical Society of Korea, 23, 73-84.
  20. Zoltai, T. (1978), History of asbestos-related mineralogical terminology. In:Gravatt, C.C., LaFleur, P.D., Heinrick, K.F.J. (Eds.), Workshop on Asbestos :Definitions and Measurement Methods. National Bureau of Standards, Special Publication 506, Maryland, pp. 1-18.