References
- J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Pure and Applied Mathematics, Vol.67, Dekker, New York, 1981.
- J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity, Selected Studies (Th.M. Rassias, G.M. Rassias, eds.), North-Holland, 1982, 41-56.
- F. Dobarro and E. Lami Dozo, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S. 58 (1983), 295-408.
- P.E. Ehrlich, Y.-T. Jung and S.-B. Kim, Constant scalar curvatures on warped product manifolds, Tsukuba J. Math. 20 no.1 (1996), 239-256. https://doi.org/10.21099/tkbjm/1496162996
- Y.-T. Jung, Partial differential equations on semi-Riemannian manifolds, Journal of Mathematical Analysis and Applications 241(2000), 238-253. https://doi.org/10.1006/jmaa.1999.6640
- J. L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J.Diff.Geo. 10(1975), 113-134. https://doi.org/10.4310/jdg/1214432678
- J. L. Kazdan and F. W. Warner, Existence and conformal deformation of metrics with prescribed Guassian and scalar curvature, Ann. of Math. 101(1975), 317-331. https://doi.org/10.2307/1970993
- J. L. Kazdan and F. W. Warner, Curvature functions for compact 2 - manifolds, Ann. of Math. 99(1974), 14-74. https://doi.org/10.2307/1971012
- M. C. Leung, Conformal scalar curvature equations on complete manifolds, Comm. in P.D.E. 20 (1995), 367-417 https://doi.org/10.1080/03605309508821100
- M. C. Leung, Conformal deformation of warped products and scalar curvature functions on open manifolds, preprint.
- T. G. Powell, Lorentzian manifolds with non-smooth metrics and warped products, Ph.D thesis, Univ. of Missouri-Columbia, 1982.