초록
위성센서 기술이 발전함에 따라서 가시광선, 적외선, 열적외선 영역 등의 파장대를 탐지하는 다양한 센서들이 발사되고 있다. 이에 따라, 다중센서 영상의 융합 및 통합에 대한 연구들이 진행되고 있으며, 이를 위해서는 다중센서의 정합이 필수적이다. 위성영상의 정합 및 자동기하보정을 위하여 SIFT, SURF와 같은 알고리즘이 제안되었다. 그러나, 광학영상과 열적외선 상의 경우 다른 분광특성을 가지고 있기 때문에, 기존의 영상정합기법을 적용할 경우에는 높은 정확도를 확보하기 어려운 문제를 지닌다. 본 연구에서는 SURF를 이용하여 참조영상의 특징점을 추출하였으며, 추출된 특징점의 위치를 기반으로 지역적 상관도를 추정하여 정합쌍을 추출하고자 하였다. 지역적 상관도의 경우에는 퓨리에 변환을 기반으로 하는 위상 상관도 기법을 적용하였다. 가상의 고해상도 다중센서 영상과 Landsat-8, ASTER 영상을 이용한 실험결과, 기존의 SURF를 활용한 정합기법과 비교하여 본 연구에서 제안한 방법이 두 영상 간 정합쌍을 더욱 효과적으로 추출할 수 있음을 확인하였다.
Various satellite sensors having ranges of the visible, infrared, and thermal wavelengths have been launched due to the improvement of hardware technologies of satellite sensors development. According to the development of satellite sensors with various wavelength ranges, the fusion and integration of multisensor images are proceeded. Image matching process is an essential step for the application of multisensor images. Some algorithms, such as SIFT and SURF, have been proposed to co-register satellite images. However, when the existing algorithms are applied to extract matching points between optical and thermal images, high accuracy of co-registration might not be guaranteed because these images have difference spectral and spatial characteristics. In this paper, location of control points in a reference image is extracted by SURF, and then, location of their corresponding pairs is estimated from the correlation of the local similarity. In the case of local similarity, phase correlation method, which is based on fourier transformation, is applied. In the experiments by simulated, Landsat-8, and ASTER datasets, the proposed algorithm could extract reliable matching points compared to the existing SURF-based method.