References
- Ramli NA, Wong TW. Sodium carboxymethyl cellulose scaffolds and their physicochemical effects on partial thickness wound healing. Intl J Pharm. 2011;403(1-2):73-82. https://doi.org/10.1016/j.ijpharm.2010.10.023
- Dinarvand R, Khodaverdi E, Atyabi F, Erfan M. Thermoresponsive drug delivery using liquid crystal-embedded cellulose nitrate membranes. Drug Deliv. 2006;13(5):345-50. https://doi.org/10.1080/10717540500394729
- Nouran El Badawi NE, Ramadan AR, Esawi AM, El-Morsi M. Novel carbon nanotube-cellulose acetate nanocomposite membranes for water filtration applications. Desalination. 2014;344:79-85. https://doi.org/10.1016/j.desal.2014.03.005
- Kang H, Liu R, Huang Y. Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Intl. 2033;62(3):338-44.
- Vlierberghe SV, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387-408. https://doi.org/10.1021/bm200083n
- Gariepy ER, Leroux JC. In situ-forming hydrogels-review of temperaturesensitive systems. Eur J Pharm Biopharm. 2004;58:409-26. https://doi.org/10.1016/j.ejpb.2004.03.019
- Ramanan RM, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006;22:118-25. https://doi.org/10.1021/bp0501367
- Kim AR, Park HS, Kim SS, Noh I. Biological evaluation of cellulose hydrogel with temperature-responsive particles. Biomater Res. 2013;17(4):181-6.
- Yang MB, Vacanti JP, Ingber DE. Hollow fibers for hepatocyte encapsulation and transplantation-studies of survival and function in rats. Cell Transplant. 1994;3(5):373-85. https://doi.org/10.1177/096368979400300504
- Risbud MV, Bhonde RR. Suitability of cellulose molecular dialysis membrane for bioartificial pancreas: in vitro biocompatibility studies. J Biomed Mater Res. 2001;54(3):436-44. https://doi.org/10.1002/1097-4636(20010305)54:3<436::AID-JBM180>3.0.CO;2-8
- Cullen B, Watt PW, Lundqvist C, Silcock D, Schmidt RJ, Bogan D, et al. The role of oxidized regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol. 2002;34(12):1544-56. https://doi.org/10.1016/S1357-2725(02)00054-7
- Ovington LG. Overview of matrix metalloprotease modulation and growth factor protection in wound healing. Part 1. Ostomy Wound Manage. 2002;48(6):3-7.
- Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y. Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res. 1989;23(1):125-33. https://doi.org/10.1002/jbm.820230110
- Entcheva E, Bien H, Yin L, Chung CY, Farrell M, Kostov Y. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials. 2004;25:5753-62. https://doi.org/10.1016/j.biomaterials.2004.01.024
- Xing Q, Zhao F, Chen S, McNamara J, DeCoster MA, Lvov YM. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater. 2010;6:2132-9. https://doi.org/10.1016/j.actbio.2009.12.036
- Fukuya MN, Senoo K, Kotera M, Yoshimoto M, Sakata O. Enhanced oxygen barrier property of poly(ethylene oxide) films crystallite-oriented by adding cellulose single nanofibers. Polymer. 2014;55(25):5843-6. https://doi.org/10.1016/j.polymer.2014.09.003
- Niyas AMI, Sankar S, Mohammed KP, Hayath BSK, Sastry TP. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int J Biol Macromol. 2015;72:680-6. https://doi.org/10.1016/j.ijbiomac.2014.08.055
- Gabriel MO, Marcio LS, Paula BD, Pierre B, Gildasio dCD, Antonio CG. Bacterial cellulose/chondroitin sulfate for dental materials scaffolds. J Biomater Tissue Eng. 2014;4(2):150-4. https://doi.org/10.1166/jbt.2014.1155
- Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993;14(5):323-30. https://doi.org/10.1016/0142-9612(93)90049-8
- Sevillano G, Rodriguez-Puyol M, Martos R, Duque I, Lamas S, Diez-Marques ML, et al. Cellulose acetate membrane improves some aspects of red blood cell function in haemodialysis patients. Nephrol Dial Transplant. 1990;5(7):497-9. https://doi.org/10.1093/ndt/5.7.497
- Chang Q, Murtaza Z, Lakowicz JR, Rao G. A: Fluorescence lifetime-based solid sensor for water. Anal Chim Acta. 1997;350(1-2):97-104. https://doi.org/10.1016/S0003-2670(97)00298-5
- Doheny JG, Jervis EJ, Guarna MM, Humphries RK, Warren RAJ, Kilburn DG. Cellulose as an inert matrix for presenting cytokines to target cells: production and properties of a stem cell factor-cellulose-binding domain fusion protein. Biochem J. 1999;339:429-34.
- Ko IK, Iwata H. An approach to constructing three-dimensional tissue Bioartif Org Iii: Tissue Sourcing, Immunoisolation. Clin Trials. 2001;944:443-55.
- Takata T, Wang HL, Miyauchi M. Migration of osteoblastic cells on various guided bone regeneration membranes. Clin Oral Impl Res. 2001;12(4):332-8. https://doi.org/10.1034/j.1600-0501.2001.012004332.x
- De Bartolo L, Morelli S, Baer A, Drioli E. Evaluation of cell behavior related to physic-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials. 2002;23(12):2485-97. https://doi.org/10.1016/S0142-9612(01)00383-0
- Kino Y, Sawa M, Kasai S, Mito M. Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes. J Surg Res. 1998;79(1):71-6. https://doi.org/10.1006/jsre.1998.5389
- Martson M, Viljanto J, Hurme T, Saukko P. Biocompatibility of cellulose sponge with bone. Eur Surg Res. 1998;30(6):426-32. https://doi.org/10.1159/000008609
- Martson M, Viljanto J, Hurme T, Laippala P, Saukko P. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 1999;20(21):1989-95. https://doi.org/10.1016/S0142-9612(99)00094-0
- Kim MS, Choi YJ, Noh I, Tae G. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res Part A. 2007;83(3):674-81.
- Falcone SJ, Doerfler AM, Berg RA. Novel synthetic dermal fillers based on sodium carboxymethyl cellulose: comparison with crosslinked hyaluronic acid-based dermal fillers. Dermatol Surg. 2007;33:136-43.
- Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, et al. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication. 2010;2:035003 (12 pp). https://doi.org/10.1088/1758-5082/2/3/035003
- Kim GW, Choi YJ, Kim MS, Park Y, Lee KB, Kim IS, et al. Synthesis and evaluation of hyaluronic acid-poly(ethylene oxide) hydrogel via Michael-type addition reaction. Curr Appl Phy. 2007;7(1):28-32. https://doi.org/10.1016/j.cap.2005.06.009
Cited by
- Preparation of Extracellular Matrix Developed Using Porcine Articular Cartilage and In Vitro Feasibility Study of Porcine Articular Cartilage as an Anti-Adhesive Film vol.9, pp.1, 2015, https://doi.org/10.3390/ma9010049
- In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo‐Forming Hydrogel vol.16, pp.8, 2015, https://doi.org/10.1002/mabi.201600001
- PCL films of varying porosity influence ICAM‐1 expression of HUVECs vol.104, pp.11, 2015, https://doi.org/10.1002/jbm.a.35818
- Photophysical and energy transfer processes in Ce3+ co-doped ZrO2: Eu3+ nanorods vol.123, pp.2, 2015, https://doi.org/10.1007/s00339-017-0777-9
- Luminescence and energy transfer mechanism in Eu3+/Tb3+-co-doped ZrO2 nanocrystal rods vol.19, pp.1, 2015, https://doi.org/10.1007/s11051-016-3703-8
- Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate-Gelatin Hydrogel for Tissue Engineering vol.15, pp.1, 2015, https://doi.org/10.1007/s13770-017-0089-3
- Advances in Degradable Embolic Microspheres: A State of the Art Review vol.9, pp.1, 2015, https://doi.org/10.3390/jfb9010014
- Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications vol.5, pp.5, 2018, https://doi.org/10.1098/rsos.172017
- Coating Dependent In Vitro Biocompatibility of New Fe-Si Nanoparticles vol.8, pp.7, 2015, https://doi.org/10.3390/nano8070495
- A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective vol.1, pp.4, 2015, https://doi.org/10.1007/s42242-018-0029-7
- Synthesis of Au Nanoparticles in Natural Matrices by Liquid-Phase Plasma: Effects on Cytotoxic Activity against Normal and Cancer Cell Lines vol.2, pp.12, 2019, https://doi.org/10.1021/acsanm.9b02106
- New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers vol.25, pp.7, 2020, https://doi.org/10.3390/molecules25071539