DOI QR코드

DOI QR Code

Preparation of PVdF/GO Composite Nanofibrous Flat Membrane and its Permeation Characteristics in Activated Sludge

PVdF/GO 복합 나노섬유 평막의 제조 및 활성슬러지 내 투과특성

  • Won, In Hye (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Jang, Wongi (Department of Chemical System Engineering, Keimyung University) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Byun, Hongsik (Department of Chemical System Engineering, Keimyung University)
  • 원인혜 (서울과학기술대학교 화공생명공학과) ;
  • 장원기 (계명대학교 화학시스템 공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과) ;
  • 변홍식 (계명대학교 화학시스템 공학과)
  • Received : 2015.02.09
  • Accepted : 2015.02.22
  • Published : 2015.02.28

Abstract

In this study the nanofiber was prepared by electrospinning method with polyvinylidene fluoride (PVdF) and a completely dispersed solution of graphene oxide (GO) in the mixed solvent of dimethylformamide (DMF) and acetone. The $0.4{\mu}m$ pore size microfiltration flat membrane was made by increasing layers of the PVdF/GO composite nanofiber. Also, transmembrane pressure (TMP) was measured in order to evaluate fouling of the PVdF/GO composite membrane which was introduced GO reducing biological fouling with the intrinsic antibacterial characteristics. The permeate experiments were carried out simultaneously for the PVdF/GO and commercialized CPVC (chlorinated polyvinyl chloride) flat membranes with $0.01m^2$ effective area in the activated sludge solution of MLSS 4,500 mg/L. TMP of PVdF/GO membrane decreased up to 79% lower than that of CPVC for $10L/m^2{\cdot}h$ permeate flux without air supply. Also, for the case of run/stop operational mode, TMP of PVdF/GO membrane decreased up to 69% lower than that of CPVC for $10L/m^2{\cdot}h$.

본 연구에서는 dimethylformamide (DMF)와 acetone의 혼합용액에 산화그래핀(graphene oxide, GO)을 분산시키고 기질 고분자인 PVdF (polyvinylidene fluoride)를 도입하여 전기방사법으로 나노섬유를 제조하였다. 또한 PVdF/GO 복합 나노섬유를 평막 형태로 적층시켜 기공크기 $0.4{\mu}m$인 정밀여과막을 제조하였다. 그리고 GO의 고유한 항균 특성으로 생물학적 오염을 줄일 수 있는 PVdF/GO 복합막의 막오염을 평가하기 위하여 막간 압력차(transmembrane pressure, TMP)를 측정하였다. 유효 막면적이 $0.01m^2$인 PVdF/GO 평막과 상용화된 MBR용 CPVC (chlorinated polyvinyl chloride) 평막을 MLSS 4,500 mg/L인 활성슬러지 수용액 내에서 동시에 투과 실험하였다. 공기를 주입하지 않을 경우, 투과유속이 $10L/m^2{\cdot}h$일 때 PVdF/GO 막의 TMP는 CPVC 막의 최대 79%까지 감소하였다. 또한 운전/휴직 방식으로 운전할 경우, $10L/m^2{\cdot}h$일 때 PVdF/GO 막의 TMP는 CPVC 막의 최대 69%까지 감소함을 확인하였다.

Keywords

References

  1. A. K. Geim, "Graphene: Status and prospects" Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  2. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. kohlhaas, E. J. Zimmney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  3. S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58
  4. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, "Graphene oxide dispersions in organic solvents", Langmuir, 24(19), 10560 (2008). https://doi.org/10.1021/la801744a
  5. H. Du, J. Li, J. Zhang, G. Su, X. Li, and Y. Zhao, "Separation of hydrogen and nitrogen gases with porous graphene membrane", J. Phys. Chem. C, 115, 23261 (2011). https://doi.org/10.1021/jp206258u
  6. H. M. Jung, W. D. Chen, W. S. Yang, and H. S. Byun, "Study on the PVdF nanofibers and graphene oxide hybrid membrane", Membr. J., 23(3), 204 (2013).
  7. W. G. Jang, J. H. Yun, and H. S. Byun, "Praparation of PAN nanofiber composite membrane with $Fe_3O_4$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24(2), 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  8. K. Sutherland, "The rise of membrane bioreactors", Filtration & Separation, 47, 14 (2010).
  9. M. Pribyl, F. Tucek, P. A. Wilderer, and J. Wanner, "Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors", Water Sci. Tech., 35, 27 (1997).
  10. V. J. Boero, W. W. Eckenfelder, Jr., and A. R. Bowers, "Soluble microbial product formation in biological systems", Water Sci. Tech., 23, 1067 (1991). https://doi.org/10.2166/wst.1991.0558
  11. A. Fenu, J. Roels, T. Wambecq, K. De Gussem, C. Thoeye, G. De Gueldre, and B. V. D. Steene, "Energy audit of a full scale MBR system", Desalination, 262, 121 (2010). https://doi.org/10.1016/j.desal.2010.05.057
  12. J. Lebegue, M. Heran, and A. Grasmick, "Membrane bioreactor: distribution of critical flux throughout an immersed HF bundle", Desalination, 231, 245 (2008). https://doi.org/10.1016/j.desal.2007.10.028
  13. W. S. Guo, S. Vigneswaran, H. H. Ngo, and W. Xing, "Experimental investigation on acclimatized wastewater for membrane bioreactors" Desalination, 207, 383 (2007). https://doi.org/10.1016/j.desal.2006.07.013
  14. J. Y. Park and J. H. Hwang, "Hybrid Water Treatment of Photocatalyst Coated Polypropylene Beads and Ceramic Membranes: Effect of Membrane and Water Back-flushing Period", Membr. J., 23, 211 (2013).
  15. F. Wicaksana, A. G. Fane, and V. Chen, "Fibre movement induced by bubbling using submerged hollow fibre membranes", J. Membr. Sci., 271, 186 (2006). https://doi.org/10.1016/j.memsci.2005.07.024
  16. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process", Membr. J., 16, 188 (2006).
  17. K. Y. Kim, J. H. Kim, Y. H. Kim, and H. S. Kim, "The Effect of Coagulant on Filtration Performance in Submerged MBR System", Membr. J., 16, 182 (2006).
  18. I. H. Won, D. C. Kim, and K. Y. Chung, "Transmembrane Pressure of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Bioreactor in Coagulant Dosag", Membr. J., 25, in press (2015).
  19. H. Jabeen, K. C. Kemp, and V. Chandra, "Synthesis of nano zerovalent iron nanoparticles- Graphene composite for the treatment lead contaminated water", J. Environ. Manage., 130, 429 (2013). https://doi.org/10.1016/j.jenvman.2013.08.022
  20. K. H. Hwang, B. M. Kwon, and H. S. Byun, "Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators", J. Membr. Sci., 378, 111 (2011). https://doi.org/10.1016/j.memsci.2011.06.005