DOI QR코드

DOI QR Code

순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조

Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents

  • 김영경 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 조유송 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 구자경 (한국기술교육대학교 에너지신소재화학공학부)
  • Kim, Young Kyoung (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Yu Song (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2015.02.08
  • 심사 : 2015.02.17
  • 발행 : 2015.02.28

초록

순수용매와 혼합용매를 사용한 상전이를 통하여 poly(L-lactic acid) (PLLA) 스캐폴드 막을 제조하였다. 순수용매로서 chloroform과 1,4-dioxane을 사용하였으며, 이들 순수용매를 혼합하여 혼합용매를 제조하였다. 스캐폴드 막의 모폴로지, 기계적 특성 그리고, 물질전달 특성을 각각 SEM, 인장강도실험 및 당 확산실험을 통하여 측정, 평가하였다. 순수 chloroform 용매를 사용한 용액으로부터는 격벽-공극 구조(solid-wall pore structure)의 스캐폴드 막이 제조되었다. 반면, 순수 1,4-dioxane 용매를 사용한 용액으로부터는 나노섬유 구조의 스캐폴드 막이 제조되었다. 혼합용매의 경우 용매 내의 조성이 변화하면서 다양한 구조의 스캐폴드 막이 제조되었다. 혼합용매 내 1,4-dioxane 함량이 20% 이하인 경우에는 격벽-공극 구조의 스캐폴드 막이 제조되었으며, 1,4-dioxane 함량이 20%인 경우에는 최대직경 $100{\mu}m$의 거대공극을 갖는 구조를 보였다. 1,4-dioxane 함량이 25% 이상인 구간에서는 나노섬유 구조의 스캐폴드 막이 제조되었다. 이 구간에서는 혼합용매 내 1,4 dioxane 함량이 변화함에 따라 나노섬유의 직경이 함께 변화하였다. 나노섬유의 최소직경은 15 nm 가량이었으며, 혼합용매 내의 1,4-dioxane 함량이 80 wt%일 때에 얻어졌다. 이상의 결과를 통하여 용매의 조성은 스캐폴드 막의 구조를 결정짓는 중요한 요소가 된다는 결론을 얻을 수 있었다.

This paper reports a fabrication of poly(L-lactic acid) (PLLA) scaffold membranes through phase separation process using pure and mixed solvents. Chloroform and 1,4-dioxane were used as pure solvents and mixed solvents were obtained by mixing the pure solvents together. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. Scaffold membranes from the solution with pure chloroform showed solid-wall pore structure. In contrast, nano-fibrous membranes were fabricated from the solution with pure 1,4-dioxane. In case of mixed solvents, the scaffold membranes showed various structures with changing composition of the solvents. When 1,4-dioxane content was lower than 20 wt% in the solvent, scaffold membrane showed solid-wall pore structure. When the content was 20 wt%, scaffold membranes with macropores with the maximum size of $100{\mu}m$ was obtained. In the concentration range of 1,4-dioxane over 25 wt%, the scaffold membranes showed nano-fibrous structures. In this range, the fibers showed different diameters with changing composition of the solvent. The minimum fiber diameter was about $15{\mu}m$, when 1,4-dioxane composition was 80 wt%. These results indicate that the composition of the solvent showed a significant effect on the structure of scaffold membrane.

키워드

참고문헌

  1. U. Boudriot, R. Dersch, A. Greiner, and J. H. Wendorff, "Electrospinning Approaches toward Scaffold Engineering-a brief overview", Artif. Organs, 30, 10, 785 (2006). https://doi.org/10.1111/j.1525-1594.2006.00301.x
  2. R. Chen and J. A. Hunt, "Biomimetic materials processing for tissue-engineering processes", J. Mater. Chem., 17, 38 3974 (2007). https://doi.org/10.1039/b706765h
  3. L. Moroni, J. R. De Wijn and C. A. Van Blitterswijk, "Integrating novel technologies to fabricate smart scaffolds", J. Biomater. Sci. Polym. Ed., 19, 5, 543 (2008). https://doi.org/10.1163/156856208784089571
  4. M. M. Stevens and J. H. George, "Exploring and engineering the cell surface interface", Science, 310, 5751 1135 (2005). https://doi.org/10.1126/science.1106587
  5. T. K. Kim, J. J. Yoon, D. S. Lee, and T. G. Park, "Gas foamed open porous biodegradable polymeric microspheres" Biomaterials, 27, 2, 152 (2006). https://doi.org/10.1016/j.biomaterials.2005.05.081
  6. X. Wang, W. Li, and V. A. Kumar, "A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications", Biomaterials, 27, 9, 1294 (2006).
  7. K. Katoh, T. Tanabe, and K. Yamauchi, "Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity", Biomaterials, 25, 18, 4255 (2004). https://doi.org/10.1016/j.biomaterials.2003.11.018
  8. P. X. Ma and J.-W. Choi, "Biodegradable polymer scaffolds with well defined interconnected spherical pore network", Tissue Eng., 7, 1, 23 (2001). https://doi.org/10.1089/107632701300003269
  9. M. J. Kim S. D. Lee, and K. H. Youm, "Effect of Inorganic Salt Additives on Formation of Phase Inversion Polyethersulfone Ultrafiltration Membrane", Membr. J., 12, 2, 75 (2002).
  10. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, C. H. Jeong, Y. M. Lee, M. S. Seo, and S. Y. Nam, "Preparation and Characterization of Microporous PVDF Membrane for Li-ion rechargeable battery", Membr, J., 17, 3, 233 (2007).
  11. B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase behavior and morphological studies of polysulfone membranes; The effect of alcohols used as a nonsolvent coagulant", Membr. J., 15, 4, 272 (2005).
  12. M. Ebrahimian-Hosseinabadi, F. Ashrafizadeh, M. Etemadifar, and S. S. Venkatraman, "Evaluating and Modeling the Mechanical Properties of the Prepared PLGA/nano-BCP Composite Scaffolds for Bone Tissue Engineering", J. Matr. Sci. Technol., 27, 12, 1005 (2011).
  13. T. Lou, X. Wang, and G. Song, "Fabrication of nano-fibrous poly(l-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber", Int. J. Biomed. Macromol., 61, 353 (2013). https://doi.org/10.1016/j.ijbiomac.2013.07.025
  14. G. Vozzi, C. Flim, A. Ahluwalia, and S. Bhatia, "Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition", Biomaterials, 24, 2533 (2003). https://doi.org/10.1016/S0142-9612(03)00052-8
  15. B. M. Whited, J. R. Whitney M. C. Hofmann, Y. Xu, and M. N. Rylander, "Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds", Biomaterials, 32, 9, 2294 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.003
  16. E. P. S. Tan and C. T. Lim, "Mechanical characterization of nanofibers - A review", Compos. Sci. Technol., 66, 9, 1102 (2006). https://doi.org/10.1016/j.compscitech.2005.10.003
  17. S. Liao, R. Murugan, C. K. Chan, and S. Ramakrishna, "Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering", J. Mech. Behav. Biomed. Mater., 1, 3, 252 (2008). https://doi.org/10.1016/j.jmbbm.2008.01.007
  18. B. J. Papenburg, L. Vogelaar, L. Bolhuis-Versteeg, R. Lammertink, D. Stamatialis, and M. Wessling, "One-step fabrication of porous micropatterned scaffolds to control cell behavior", Biomaterials, 28, 1998 (2007). https://doi.org/10.1016/j.biomaterials.2006.12.023
  19. B. J. Papenburg, L. Bolhuis-Versteeg, D. W. Grijpma, J. Feijen, M. Wessling, and D. Stamatialis, "A facile method to fabricate poly(L-lactide) nano-fibrous morphologies by phase inversion", Acta Biomaterialia, 6, 2477 (2010). https://doi.org/10.1016/j.actbio.2009.12.051
  20. Y. S. Cho, Y. K. Kim, and J-K. Koo, "Effects of Solvent on the Fabrication of Poly(L-lactice) Scaffold Membranes Through Phase Inversion", Membr. J., 24, 2, 113 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.113
  21. N. M. S Bettahalli, H. Steg, M. wessling, and D. Stamatials, "Development of poly(L-lactic acid)hollow fiber membranes gor aritficial vasculature in tissue engineering scaffolds", J. Membr. Sci., 371, 117 (2011). https://doi.org/10.1016/j.memsci.2011.01.026