DOI QR코드

DOI QR Code

Photocatalytic Oxidation of Free Cyanide Using UV LED

자외선 LED를 이용한 자유 시안의 광촉매 산화

  • Kim, Seong Hee (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Seol, Jeong Woo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Woo Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Sang-Woo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 김성희 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 설정우 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 이상우 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Received : 2014.11.23
  • Accepted : 2015.01.12
  • Published : 2015.01.31

Abstract

This study was initiated to remove free cyanide from wastewater using the process of photocatalytic oxidation. UV lamp has been extensively used as a light source in conventional photocatalytic oxidation, but numerous drawbacks of UV lamp have been raised so far. Thus, this study focused on evaluating the applicability of UV LED as an alternative light source to overcome the drawbacks of UV lamp. Furthermore, the effects of diverse operational parameters on the performance of process were investigated. The results demonstrated the applicability of UV LED as a substitute of UV lamp. Also, the results show that the performance of process was improved by the increase in the number of UV LEDs used. To acquire economic feasibility as well as high efficacy, however, it is required to determine the optimum number of UV LED prior to practical implementation of the process. Among the three types of photocatalysts (anatase, rutile, and Degussa P25) tested, the Degussa P25 showed the greatest performance, and it was proven that the process was not improved as much as the Degussa P25 through simple mixing of anatase and rutile without any pretreatment. In addition, the removal efficiency of free cyanide appeared to be increased with the decrease in the particle size of $TiO_2$ photocatalyst. Besides, the process was enhanced with injection of oxygen which is considered as a major electron acceptor in the photocatalytic oxidation.

본 연구는 기존의 광촉매 산화 기술에서 주로 사용된 자외선램프의 단점을 보완할 수 있는 대체 광원인 자외선 LED를 사용하여 자유 시안을 폐수로부터 제거하는 공정을 평가하고자 수행되었다. 특히 광촉매 산화 공정의 다양한 영향 인자들에 대해 살펴보았다. 연구 결과, 자외선 LED는 기존의 광원인 자외선램프를 대체할 수 있는 적용성을 확인할 수 있었다. 뿐만 아니라 LED 개수를 증가할수록 광촉매 산화 반응의 효율은 증가하였으나, 공정의 경제성과 효율성을 동시에 만족시키기 위해서는 최적의 LED의 개수를 선정할 필요가 있다는 것을 확인하였다. 광촉매로 이용된 아나타제(anatase), 루틸(rutile), Degussa P25 등 세 종류의 $TiO_2$ 중 Degussa P25가 가장 높은 성능을 보였으며, 아나타제(anatase)와 루틸(rutile)을 특별한 전처리 과정없이 단순하게 혼합하였을 때는 Degussa P25 만큼의 공정의 효율은 얻지 못했다. 또한 $TiO_2$의 입자 크기가 작을수록 광촉매 산화 반응이 더욱 활발하게 이루어졌다. 그리고 광촉매 산화 반응에 있어 주로 전자 수용체 역할을 수행하는 산소를 주입함으로써 공정의 효율이 증진되는 효과를 얻을 수 있었다.

Keywords

References

  1. Yeo, S. W., Kim, J. H. and Lee, H.-I., "Photocatalytic treatment of cyanide in water," J. Kor. Chem. Soc., 46, 64-68 (2002). https://doi.org/10.5012/jkcs.2002.46.1.064
  2. Sohn, D. R., Kim, J. H. and Lee, H. I., "The effect of $H_2O_2$ on photo-degradation of cyanide over $TiO_2$ catalyst," J. Kor. Ind. Eng. Chem., 14, 391-396(2003).
  3. Lee, J. S., Lee, K. T., Kim, C. K., Kim, H. J., Lee, C. H. and Lee, J. H., "Toxicity of binary mixture of cyanide and 3,5-dichlorophenol to vibrio fischeri determined by newly developed N-tox bioassay system," J. Environ. Toxicol., 22, 27-36(2007).
  4. Jung, Y. H. and Lee, S. K., "Treatment characteristics of plating wastewater containing free cyanide, cyanide complexes and heavy metals," J. Kor. Soc. Water Qual., 25, 979-983 (2009).
  5. Kim, M. J. and Shin, B. S., "Electrolytic treatment of copper cyanide in wastewater from gold mines," J. Kor. Soc. Min. Energy Res. Eng., 36, 280-286(1998).
  6. Kim, S. T., Yoon, Y. H., Park, J. A. and Shim, U. S., "Distribution of metals and cyanide in tailings, soils, and stream sediments around Gubong disused mine," J. Kor. Soil Environ. Soc., 4, 35-47(1999).
  7. Jung, M. C., "Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea," Econ. Environ. Geol., 32, 73-82(1999).
  8. Johnson, C. A., Leinz, R. W. Grimes, D. J. and Rye, R. O., "Photochemical changes in cyanide speciation in drainage from a precious metal ore heap," J. Environ. Sci. Technol., 36, 840-845(2002). https://doi.org/10.1021/es011064s
  9. Jung, M. C. and Jung, M. Y., "Evaluation and management method of environmental contamination from abandoned metal mines in Korea," J. Kor. Soc. Min. Energy Res. Eng., 43, 383-394(2006).
  10. Johnson, C. A., Leinz, R. W., Grimes, D. J. and Rye, R. O., "Cyanide speciation at four gold leach operations undergoing remediation," Environ. Sci. Technol., 42, 1038-1044(2008). https://doi.org/10.1021/es702334n
  11. Raybuck, S. A., "Microbes and microbial enzymes for cyanide degradation," Biodegradation, 3, 3-18(1992).
  12. Watanabe, A., Yano, K., Ikebukuro, K. and Karube, I., "Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase," Microbiology, 144, 1677-1682(1998). https://doi.org/10.1099/00221287-144-6-1677
  13. Meehan, S. M. E., Weaver, T. R. and Lawrence, C. R., "The biodegradation of cyanide in groundwater at gasworks sites, Austraila: implications for site management," Environ. Manage. Health, 10, 64-71(1999). https://doi.org/10.1108/09566169910257112
  14. Lee, S. W. and Kim, J. S., "Antidotes of cyanide intoxication," J. Kor. Med. Assoc., 56, 1076-1083(2013). https://doi.org/10.5124/jkma.2013.56.12.1076
  15. Adams, M. D. and Fleming, C. A., "Mechanism of adsorption of aurocyanide onto activated carbon," Metall. Trans., B20, 315-325(1989).
  16. Adams, M. D., "The mechanism of adsorption of aurocyanide onto activated carbon. Relation between the effects of oxygen and ionic strength," Hydrometallurgy, 25, 171-184(1990). https://doi.org/10.1016/0304-386X(90)90037-3
  17. Adhoum, N. and Monser, L., "Removal of cyanide from aqueous solution using impregnated activated carbon," Chem. Eng. Process, 41, 17-21(2002). https://doi.org/10.1016/S0255-2701(00)00156-2
  18. Mosher, J. B. and Figueroa, L., "Biological oxidation of cyanide: a viable treatment option for the minerals processing industry," Miner. Eng., 9, 573-581(1996). https://doi.org/10.1016/0892-6875(96)00044-1
  19. USEPA, "Capsule Report: Managing cyanide in metal finishing," Office of research and development, National risk management research laboratory, Technology transfer and support division, pp. 1-23(2000).
  20. International cyanide management institute, "Cyanide facts: Cyanide sampling and analytical methods for gold mining. www.cyanidecode.org, pp. 1-8(2002).
  21. Fernando, K., Tran, T., Laing, S. and Kim, M. J., "The use of ion exchange resins for the treatment of cyanidation tailings, Part 1. Process development of selective base metal elution," Miner. Eng., 15, 1163-1171(2002). https://doi.org/10.1016/S0892-6875(02)00257-1
  22. Rosehart, R. G., "Mine water purification by reverse osmosis," Can. J. Chem. Eng., 51, 788-789(1973). https://doi.org/10.1002/cjce.5450510629
  23. Desai, J. D., Ramakrishna, C., Patel, P. S. and Awasthi, S. K., "Cyanide wastewater treatment and commercial applications," Chem. Eng. World, 33, 115-121(1998).
  24. Wedl, D. J. and Fulk, R. J., "Cyanide destruction in plating sludges by hot alkaline chlorination," Met. Finish., 89, 33-37(1991).
  25. Desai, J. D. and Ramakrishna, C., "Microbial degradation of cyanide and its commercial application," J. Sci. Ind. Res. India, 57, 441-453(1998).
  26. Patil, Y. B. and Paknikar, K. M., "Development of a process for biodetoxification of metal cyanide from wastewater," Proc. Biochem., 35, 1139-1151(2000). https://doi.org/10.1016/S0032-9592(00)00150-3
  27. Akcil, A., "Destruction of cyanide in gold mill effluents: Biological versus chemical treatments," Biotechnol. Adv., 21, 501-511(2003). https://doi.org/10.1016/S0734-9750(03)00099-5
  28. Parga, J. R., Shukla, S. S. and Carrillo-Pedroza, F. R., "Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol," J. Waste Manage. 23, 183-191(2003). https://doi.org/10.1016/S0956-053X(02)00064-8
  29. Carrillo-Pedroza, F. R., Nava-Alonso, F. and Uribe-Salas, A., "Cyanide oxidation byh ozone in cyanidation tailings," Miner. Eng., 13, 541-548(2000). https://doi.org/10.1016/S0892-6875(00)00034-0
  30. Annachhatre, A. P. and Amornkaew, A., "Upflow anaerobic sludge blanket treatment of starch wastewater containing cyanide," Water Environ. Res., 73, 622-632(2001). https://doi.org/10.2175/106143001X143358
  31. Dash, R. R., Balomajumder, C. and Kumar, A., "Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB)," J. Hazard. Mater., 152, 387-396(2008). https://doi.org/10.1016/j.jhazmat.2007.07.009
  32. Malhotra, S., Pandit, M., Kapoor, J. C. and Tyagi, D. K., "Photo-oxidation of cyanide in aqueous solution by the UV/$H_2O_2$ process," J. Chem. Technol. Biotechnol., 80, 13-19 (2005). https://doi.org/10.1002/jctb.1127
  33. Wada, H., Yanaga, K., Kuroda, Y., Hanela, S. and Hirayama, Y. "Recycling of wastewater containing iron-complex cyanides using UV photodecomposition and UV ozone oxidation in combination with an ion-exchange resin method," Bull. Chem. Soc. Jpn., 78, 512-518(2005). https://doi.org/10.1246/bcsj.78.512
  34. Wahaab, R. A., Moawad, A. K., Taleb, E. A., Ibrahim, H. S. and El-Nazer, H. A. H., "Combined photocatalytic oxidation and chemical coagulation for cyanide and heavy metals removal from electroplating wastewater," J. World Appl. Sci., 8, 462-469(2010).
  35. Chiang, K., Amal, R. and Tran, T., "Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide," J. Adv. Environ. Res., 6, 471-485(2002). https://doi.org/10.1016/S1093-0191(01)00074-0
  36. Chiang, K., Amal, R. and Tran, T."Photocatalytic oxidation of cyanide : kinetic and mechanistic studies," J. Mol. Catal. A: Chem., 193, 285-297(2002).
  37. Gerakines, P. A., Moore, M. H. and Hudson, R. L., "Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide," Icarus, 170, 202-213 (2004). https://doi.org/10.1016/j.icarus.2004.02.005
  38. Fujishima, A., Rao, T. N. and Tryk, D. A., "Titanium dioxide photocatalysis" J. Photochem. Photobiol., C : Photochem. Rev., 1, 1-21(2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  39. Shie, J. L., Lee, C. H., Chiou, C. S., Chang, C. T., Chang, C. C. and Chang, C. Y., "Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst," J. Hazard. Mater., 155, 164-172(2008). https://doi.org/10.1016/j.jhazmat.2007.11.043
  40. Shie, J. L. and Pai C. Y., "Photodegradation kinetics of toluene in indoor air at different humidities using UVA, UVC and UVLED light sources in the presence of silver titanium dioxide," J. Indoor Built Environ., 21, 503-512(2010).
  41. Lee, G. D. and Lee, H. I., "Application of photocatalysis," J. Kor. Ind. Eng. Chem., 3, 35-45(1992).
  42. Gonghu, L. and Gray, K. A., "The solid-solid interface: Explaining the high and unique photocatalytic reactivity of $TiO_2$-based nanocomposite materials," J. Chem. Physics, 339, 173-187(2007).

Cited by

  1. Photocatalytic Oxidation of Arsenite Using Goethite and UV LED vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.9