DOI QR코드

DOI QR Code

Microfluidic Suction Pump based on Restoring Force of Elastomer for Liquid Transportation in Microfluidic System

미세유체시스템의 유체이송을 위한 탄성체의 복원력을 이용한 흡입형 미세유체펌프

  • Byun, Kang Il (Department of Conversion System Engineering, Kangwon National University) ;
  • Han, Eui Don (Department of Conversion System Engineering, Kangwon National University) ;
  • Kim, Byeong Hee (Department of Conversion System Engineering, Kangwon National University) ;
  • Seo, Young Ho (Department of Conversion System Engineering, Kangwon National University)
  • Received : 2014.08.11
  • Accepted : 2014.11.21
  • Published : 2015.02.15

Abstract

This paper presents a disposable passive suction pump that uses the restoring force of an elastomeric chamber for liquid transportation in a microfluidic system. The proposed suction pump can be operated by finger pressure without any peripheral equipment. To adjust the generated suction pressure, five different displacements of the suction chamber ceiling, two different chamber shapes, and five different elastic moduli of the elastomer were considered. For a cylindrical chamber with a 5 mm height and 5 mm radius, the generated suction pressure and flow rate increased almost linearly up to about 31 kPa and $160.8{\mu}L/min$, respectively, depending on the chamber deformation. A maximum suction pressure of $42.9{\pm}0.7kPa$ was obtained for a hemispherical chamber with a 2.1 mm height and 5 mm radius.

Keywords

References

  1. Maeng, J. H., Hwang, S. Y., 2008, Application and Prospect of a Biochip for Clinical Medicine, The Korean Institute of Information Scientists and Engineers, 26:1 31-37.
  2. Fiorini, G. S., Chiu, D. T., 2005, Disposable Microfluidic Devices: Fabrication, Function, and Application, Bio Techniques, 38:3 429-466.
  3. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R., Weigl, B. H., 2006, Microfluidic Diagnostic Technologies For Global Public Health, Nature, 442:7101 412-418. https://doi.org/10.1038/nature05064
  4. Kim, J., Kang, M., Jensen, E. C., Mathies, R. A., 2012, Lifting Gate Polydimethylsiloxane Microvalves and Pumps for Microfluidic Control, Anal. Chem., 84:4 2067-2071. https://doi.org/10.1021/ac202934x
  5. Laser, D. J., Santiago, J. G., 2004, A Review of Micropumps, Micromech. Microeng., 14 R35-R64. https://doi.org/10.1088/0960-1317/14/6/R01
  6. Niu, X., Liu, L. Wen, W., Sheng, P., 2006, Active Microfluidic Mixer Chip, Applied Physics Letters, 88:15 153508. https://doi.org/10.1063/1.2195567
  7. Beebe, D. J., Mensing, G. A., Walker, G. M., 2002, Physics and Applications of Microfluidics in Biology, Annu. Rev. Biomed. Eng., 4: 261-286. https://doi.org/10.1146/annurev.bioeng.4.112601.125916
  8. Barry, R., Ivanov, D., 2004, Microfluidics in Biotechnology, Journal of Nanobiotechnology, 2:2. https://doi.org/10.1186/1477-3155-2-2
  9. Cho, B. S., Schuster, T.G., Zhu, X., Chang, D., Smith, G. D., Takayama, S., 2003, Passively Driven Integrated Microfluidic System for Separation of Motile Sperm, Anal. Chem., 75:7 1671-1675. https://doi.org/10.1021/ac020579e
  10. Hillerstrom, A., Kronberg, B. 2008, A Two-Step Method for the Synthesis of a Hydrophilic PDMS Interpenetrating Polymer Network, J. of Appl. Polymer Sci. 110:5 3059-3067. https://doi.org/10.1002/app.28485
  11. Jang, W. K., Kim, H. J., Kim, B. H., Seo, Y. H., 2013, Disposable Microfluidic Infusion Pump using Elastomeric Blister Actuator, Korean Society of Manufacturing Technology Engineers, 22:2 235-240. https://doi.org/10.7735/ksmte.2013.22.2.235
  12. Park, Y. M., Bang, H. C., Seo, Y. H., Kim, B. H., 2014, Development of Surface-mount-type Crown-shaped Lens for Reducing Glare Effect of Light-emitting Diode Light Source, Korean Society of Manufacturing Technology Engineers, 23:1 064-068. https://doi.org/10.7735/ksmte.2014.23.1.064
  13. Bruus, H., 2008, Theoretical Microfluidics, Oxford University Press Inc., New York, United States.
  14. Khanafer, K., Duprey, A., Schlicht, M., Berguer. R., 2009, Effects of Strain Rate, Mixing Ratio, and Stress-Strain Definition on the Mechanical Behavior of the Polydimethylsiloxane (PDMS) Material as Related to Its Biological Applications, Biomed Microdevices, 11:2 503-508. https://doi.org/10.1007/s10544-008-9256-6