DOI QR코드

DOI QR Code

Remediation of Muddy Tidal Flat using Porous Pile

다공질 파일을 이용한 점토질 갯벌의 저질환경개선

  • 김경회 (부경대학교 해양공학과) ;
  • 이인철 (부경대학교 해양공학과) ;
  • 강윤구 (삼성물산(주) 건설부문 Civil사업부) ;
  • Received : 2014.11.24
  • Accepted : 2015.02.03
  • Published : 2015.02.28

Abstract

Field experiment were carried out to investigate the formation of ground water flow and remediation of muddy tidal flat by installation of porous pile at the tidal flat of brackish river located in Hiroshima City, Japan. After the installation of porous pile, the concentrations of Dissolved Oxygen (DO) in the interstitial water in the porous pile increased with maximum concentration of 4 mg/L due to a formation of groundwater flow. It was observed that a increase in Oxidation Reduction Potential (ORP) and a decrease in Ignition Loss (IL) in the porous pile site and these must be caused by the increase of dissolved oxygen in the interstitial water. From these results obtained above, it is concluded that the porous pile is an effective technology for remediation of muddy tidal flats.

본 연구에서는 일본 히로시마시 텐마강 하구에 위치한 점토질 갯벌을 대상으로 투수성이 높은 다공질 파일을 설치하여 갯벌 내부에서의 지하수 흐름 형성여부를 확인하고 그에 따른 저질의 성상변화를 조사하였다. 하천의 수위가 변할 때 하천수가 다공질 파일의 하부 및 상부를 통해 공급되면서 갯벌 내부에서 지하수의 흐름이 형성되는 것이 확인되었다. 지하수의 흐름을 통해 다공질 파일내의 DO 농도가 최대 4 mg/L까지 증가하였다. 다공질 파일 내부의 DO 농도의 증가는 저질내의 환원물질과 유기물량을 감소시키는데 효과적이었으며, 지하수의 흐름은 퇴적된 점토질 입자의 재부상을 촉진시키는 것으로 조사되었다. 이상의 결과로부터 점토질 갯벌 내에 다공질 파일을 설치함으로써 점토질 갯벌의 저질 환경을 효과적으로 개선할 수 있음을 확인하였다.

Keywords

References

  1. Asaoka, S., Yamamoto, T., Yoshioka, I. and Tanaka, H. (2009). Remediation of coastal marine sediments using granulated coal ash. Journal of Hazardous Materials, 172, 92-98. https://doi.org/10.1016/j.jhazmat.2009.06.140
  2. Burger, J. (2008). Environmental management: Integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands. Science of the Total Environment 400, 6-19. https://doi.org/10.1016/j.scitotenv.2008.06.041
  3. Fujiwara, T., Kim, K., Touch, N. and Hibino, T. (2008). Formation of the Water Cirulation by Construction of Infiltration-Pillar in the Riverbank that Sludge Deposits. Proceedings of the 7th International Conference on Civil and Environmental Engineering. 52
  4. Kim, K., Abe, M., Komai, K. and Hibino, T. (2009). An effect of pore water infiltration on the re-suspension of sea bottom sediment. Journal of Japan Society of Civil Engineers, Ser. B2. 65, 971-975. (in Japanese with English abstract)
  5. Majone, M., Verdini, R., Aulenta, F., Rossetti, S., Tandoi, V., Kalogerakis, N., Agathos, S., Puig, S., Zanaroli, G. and Fava, F. (2015). In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New Biotechnology 32, 133-146. https://doi.org/10.1016/j.nbt.2014.02.011
  6. Nakashita, S., Hibino, T., Fukuoka, S. and Mizuno, M. (2007). Characteristics of groundwater flow and tidal flat formed by river structure in the estuary. Journal of Japan Society of Civil Engineers, Ser. B2. 63, 1246-1250. (in Japanese with English abstract)
  7. Pereira, A., Tassin, B. and Jorgensen, S. E. (1994). A model for decomposition of the drown vegetation in an Amazonian reservoir. Ecological Modeling, 75/76, 447-458. https://doi.org/10.1016/0304-3800(94)90039-6
  8. Yamamoto, T., Harada, K., Kim, K.H., Asaoka, S. and Yoshioka, I. (2013). Suppression of phosphate release from coastal sediments using granulated coal ash. Estuarine, Coastal and Shelf Science 116, 41-49. https://doi.org/10.1016/j.ecss.2012.06.010