DOI QR코드

DOI QR Code

A Hazardous Substance Monitoring Sensor Network Using Multiple Robot Vehicle

다수의 무인기를 이용한 유해 물질 감시 센서 네트워크

  • 천정명 (울산대학교 전기전자컴퓨터공학과) ;
  • 김사목 (울산대학교 전기전자컴퓨터공학과) ;
  • 이상후 (울산대학교 전기전자컴퓨터공학과) ;
  • 윤석훈 (울산대학교 전기전자컴퓨터공학과)
  • Received : 2015.01.07
  • Accepted : 2015.02.13
  • Published : 2015.02.28

Abstract

In this paper, we consider a mobile sensor network for monitoring a polluted area where human beings cannot access. Due to the limited sensing range of individual unmanned vehicles, they need to cooperate to achieve an effective sensing coverage and move to a more polluted region. In order to address the limitations of sensing and communication ranges, we propose a hazardous substance monitoring network based on virtual force algorithms, and develop a testbed. In the considered monitoring network, each unmanned vehicle achieves an optimal coverage and move to the highest interest area based on neighboring nodes sensing values and locations. By using experiments based on the developed testbed, we show that the proposed monitoring network can autonomously move toward a more polluted area and obtain a high weighted coverage.

본 논문에서는 인력이 접근하기 힘든 오염지역 감시를 위하여 다수 무인기 기반 이동센서네트워크를 고려한다. 개별 무인기의 센싱 범위는 제한되어 있으므로 효과적인 지역 감시를 위해서는 무인기가 서로 협력하여 효과적인 센싱 커버리지를 획득하고 보다 많은 유해물질이 검출되는 지점으로 이동할 수 있어야 한다. 본 논문에서는 센싱 및 통신 거리의 제약을 극복하기 위하여 가상력 기반의 알고리즘을 이용하는 감시 네트워크를 제안하고 테스트베드를 구축한다. 감시 네트워크에서 각 무인기는 이웃 무인기의 센싱값과 위치 정보를 바탕으로 최적 커버리지를 획득하고 감시 지역의 센싱 최대치 지점으로 이동하게 된다. 야외 테스트베드를 이용한 시험을 통해 제안하는 유해 물질 감시 센서 네트워크는 오염 지역에 자발적 접근이 가능하고 높은 가중 커버리지(Weighted Coverage) 획득이 가능함을 보인다.

Keywords

References

  1. P. Benavidez, M. Jamshidi, "Mobile Robot Navigation and Target Tracking", Proc. of the 2011 6th International Conference on System of Systems Engineering, Albuquerque, New Mexico, pp.299-304, 2011.
  2. T. Han, Y. Seo, "Emergency Situation Detection using Images from Surveillance Camera and Mobile Robot Tracking System", The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC) VOL. 9, No. 5, pp. 101-107, 2009.
  3. Y. Seo, "Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot", The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC) VOL. 10 No. 4, pp.91-97, 2010.
  4. S. L. Smith, D. Rus, "Multi-Robot Monitoring in Dynamic Environments with Guaranteed Currency of Observations", 49th IEEE Conference on Decision and Control, pp.514-521, 2010.
  5. A. Renzaglia, L. Doitsidis, A. Martinelli, E. B. Kosmatopoulos, "Adaptive-based Distributed Cooperative Multi-Robot Coverage", American Control Conference (ACC), pp.468-473, 2011.
  6. A. Derbakova, N. Correll, D. Rus, "Decentralized Self-Repair to Maintain Connectivity and Coverage in Networked Multi-Robot Systems", IEEE International Conference on Robotics and Automation, pp3863 - 3868, 2011.
  7. D. V. Le, H. Oh, S. Yoon, "VirFID: A Virtual Foce(VF)-based Interest-Driven moving phenomenon monitoring scheme using multiple mobile sensor nodes", Ad Hoc Networks, 2014, http://dx.doi.org/10.1016/j.adhoc.2014.12.002
  8. Q. Zhang, G. Sobelman, T. He, "Gradient-driven target acquisition in mobile wireless sensor networks", Second International Conference on Mobile Ad-hoc and Sensor Networks, pp. 365-376, 2006.
  9. R. Olfati-Saber, "Flocking for multi-agent dynamic systems: Algorithms and theory", IEEE Transactions on Automatic Control 51, 401-420, 2006. https://doi.org/10.1109/TAC.2005.864190
  10. The Open Platform for Robotic Services(OPRoS) http://www.opros.or.kr/
  11. D. B. Johnson, D. A. Maltz, "Dynamic source routing in adhoc wireless networks," in Mobile computing Chapter.5., 1996.
  12. C. E. Perkins, P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector(DSDV) Routing for Mobile Computers", ACM, pp.234 -244, 1994.
  13. C. E. Perkins, E. M. Royer, "Ad Hoc On-Demand Distance Vector Routing", in Proc. of the 2nd IEEE Workshop on Mobile Computing Syslems and Applications, pp. 90-100, 1999.