DOI QR코드

DOI QR Code

Control of Nano-Scaled Surface Microstructure of Al Sample for Improving Heat Release Ability

Al 소재의 방열특성 향상을 위한 미세조직 제어 연구

  • Yeo, In-Chul (School of Mechanical System Engineering, Incheon University) ;
  • Kang, In-Cheol (Technology Convergence Center, Incheon Technopark)
  • 여인철 (인천대학교 기계시스템 공학부) ;
  • 강인철 ((재)인천테크노파크 융복합센터)
  • Received : 2014.11.27
  • Accepted : 2015.02.10
  • Published : 2015.02.28

Abstract

In this study, the control of microstructure for increasing surface roughness of Al with an electro-chemical reaction and a post treatment is systematically investigated. The Al specimen is electro-chemically treated in an electrolyte. In condition of the post treatment at $100^{\circ}C$ for 10 min, a change of the surface microstructure occur at 50V (5 min), and a oxidized layer is at 400V, to which lead a decreasing surface roughness. The minimum temperature of the post treatment for a change of microstructure is $80^{\circ}C$. Moreover, in the condition of 300V (5 min), the electro-chemical reaction is followed by the post treatment at $100^{\circ}C$, the critical enduring time for the change of microstructure is 3 min. The longer post treatment time leads to the rougher surface. The treated Al specimen demonstrate better heat release ability owing to the higher surface roughness than the non-treated Al.

Keywords

References

  1. M. A. Tahat, Z. H. Kodah, B. A. Jarrah and S. D. Probert: Appl. Energ., 67 (2000) 419. https://doi.org/10.1016/S0306-2619(00)00032-5
  2. T. M. Jeng: Int. J. Heat Mass Tran., 80 (2015) 411. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.043
  3. A. J. Shkarah, M. Y. B. Sulaiman, R. H. Ayob and H. Togun: Int. Comm. Heat Mass Tran., 48 (2013) 108. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.006
  4. A. J. Shkarah, M. Y. B. Sulaiman and R. H. Ayob: Int. Rev. Mech. Eng., 7 (2013) 231.
  5. A. L. Yerokhin, A. A. Voevodin, V. V. Lyubimov, J. Zabinski and M. Donley: Surf. Coating Tech., 110 (1998) 140. https://doi.org/10.1016/S0257-8972(98)00694-X
  6. S. V. Gnedenkov, O. A. Khrisanfoca, A. G. Zavidnaya, S. L. Sinebrukhov, A. N. Kovryanov, T. M. Scorobogatova and P. S. Gordienko: Surf. Coating Tech., 123 (2000) 24. https://doi.org/10.1016/S0257-8972(99)00421-1
  7. S. G. Xin, S. Li-Xin, Z. Rong-Gen and H. Xing-Fang: Surf. Coating Tech., 199 (2005) 184. https://doi.org/10.1016/j.surfcoat.2004.11.044
  8. L. RamaKrishna, A. Sudha Purnima and G. Sundararajan: Wear, 261 (2006) 1095. https://doi.org/10.1016/j.wear.2006.02.002
  9. H. J. Oh, J. H. Lee, H. J. Ahn, Y. S. Jeong, N. J. Park, S. S. Kim and C. S. Chi: Mater. Sci. Eng., 449 (2007) 348.
  10. J. W. Kang, Y. H. Shin and Y. S. Tak: Electrochem. Acta, 51 (2005) 1012. https://doi.org/10.1016/j.electacta.2005.04.070
  11. J. T. Kwon, H. G. Shin, Y. H. Seo, B. H. Kim, H. G. Lee and J. S. Lee: Curr. Appl. Phys., 9 (2009) e81. https://doi.org/10.1016/j.cap.2008.12.034
  12. I. C. Yeo and I. C. Kang: J. Korean Powder Metall. Inst., 18 (2011) 575 (Korean). https://doi.org/10.4150/KPMI.2011.18.6.575
  13. J. G. Kim and I. C. Kang: J. Korean Powder Metall. Inst., 19 (2012) 196 (Korean). https://doi.org/10.4150/KPMI.2012.19.3.196
  14. R. G. Xiao and K. P. Yan: Corrosion Sci., 50 (2008) 3256. https://doi.org/10.1016/j.corsci.2008.08.031

Cited by

  1. Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals vol.26, pp.7, 2016, https://doi.org/10.3740/MRSK.2016.26.7.376