DOI QR코드

DOI QR Code

Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method

Ni/Mo 합금분말(FLC-4608)의 소결경화 공정에서 유한요소법을 이용한 마르텐사이트 분율의 예측

  • Park, Hyo Wook (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology)) ;
  • Joo, Soo-Hyun (Center for Advanced Aerospace Materials, POSTECH (Pohang University of Science and Technology)) ;
  • Lee, Eon Sik (Materials Research Division, RIST) ;
  • Kwon, Ki Hyuk (Materials Research Division, RIST) ;
  • Kim, Hyong Seop (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology))
  • 박효욱 (포항공과대학교, 신소재공학과) ;
  • 주수현 (포항공과대학교, 항공재료연구센터) ;
  • 이언식 (포항산업과학연구원, 재료공정연구소) ;
  • 권기혁 (포항산업과학연구원, 재료공정연구소) ;
  • 김형섭 (포항공과대학교, 신소재공학과)
  • Received : 2015.02.21
  • Accepted : 2015.02.25
  • Published : 2015.02.28

Abstract

In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.

Keywords

References

  1. H. S. Kim and D. N. Lee: Korean J. Met. Mater., 30 (1992) 37 (Korean).
  2. R. M. German: Powder Metallurgy of iron and Steel, John Wiley, New York (1998) 128.
  3. W. B. James: Proceedings of International Conference on Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Las Vegas (1998) 1.
  4. M. Schmidt, P. Thorne, U. Engstrm, J. Gabler, T. J. Jesberger and S. Feldbauer: World Congress on Powder Metallurgy and Particulate Particulate Materials, MPIF, Las Vegas (2004) 89.
  5. M. L. Marucci, G. Fillari, P. King and K. S. Narasimhan: PM2004 World Congress, Vienna (2004).
  6. B. Lindsley and W. B. James: Euro PM, Prague (2005) 275.
  7. B. Lindsley, G. Fillari and T. Murphy: Advances in Powder Metallurgy and Particulate Materials by C. Ruas and T. A. Tomlin, Metal Powder Industries Federation, Princeton (2005) 10.
  8. S. Hatami, A. Malakizadi, L. Nyborg and D. Wallin: J. Mater. Process. Tech., 210 (2010) 1180. https://doi.org/10.1016/j.jmatprotec.2010.03.002
  9. K. S. Moghaddarn, M. Ghambari, H. Farhangi and N. Solirnanjad: J. Iron Steel Res. Int., 19 (2012) 43.
  10. I. Mutlu and E. Oktay: Mater. Des., 44 (2013) 274. https://doi.org/10.1016/j.matdes.2012.08.032