Abstract
A conventional missing value problem in the statistical analysis k-Nearest Neighbor(KNN) method are used for a simple imputation method. When one of the k-nearest neighbors is an extreme value or outlier, the KNN method can create a bias. In this paper, we propose a Weighted k-Nearest Neighbors(WKNN) imputation method that can supplement KNN's faults. A Monte-Carlo simulation study is also adapted to compare the WKNN method and KNN method using real data set.
통계적 분석을 할 때 결측치가 발생하는 것은 매우 통상적이다. 이러한 결측치를 대치하는 방법은 여러가지가 있으며, 기존에 사용되는 단일대치법으로 k-nearest neighbor(KNN) 방법이 있다. 하지만 KNN 방법은 k개의 최근접 이웃들 중 극단치나 이상치가 있을 때 편의를 일으킬 수 있다. 본 논문에서는 KNN 방법의 단점을 보완하여 가중 k-최근접이웃(Weighted k-Nearest Neighbors; WKNN) 대치법을 제안하였다. 또한 모의실험을 통해서 기존의 방법과 비교하였다.