• 제목/요약/키워드: k-최근접이웃

검색결과 145건 처리시간 0.021초

가중 적응 최근접 이웃을 이용한 결측치 대치 (On the use of weighted adaptive nearest neighbors for missing value imputation)

  • 염윤진;김동재
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.507-516
    • /
    • 2018
  • 결측치를 대치하는 여러가지 단일대치법 중에서 다변량 정규성 등의 모수적 모형이 만족되지 않을 때에도 강건성(robustness)을 지니는 k-최근접 이웃 대치법(k-nearest neighbors; KNN)이 널리 활용된다. KNN대치법에서 자료의 국소적 특징을 반영한 적응 최근접 이웃(adaptive nearest neighbors; ANN) 대치법과 k개의 최근접 이웃들 중 극단값이나 이상값이 있는 경우 이들의 영향에 덜 민감한 가중 k-최근접 이웃(weighted KNN; WKNN) 대치법의 장점을 결합한 가중 적응 최근접 이웃(weighted ANN; WANN) 대치법을 제안하였다. 또한 모의실험을 통하여 기존의 방법들과 제안한 방법을 비교하였다.

도로 네트워크를 위한 k-최근접 이웃 질의의 처리 방안

  • 이상철;김상욱
    • 정보와 통신
    • /
    • 제25권7호
    • /
    • pp.16-23
    • /
    • 2008
  • 텔레매틱스에서 위치 정보 서비스를 효과적으로 제공하기 위해 이동 객체와 더불어 시설물과 같은 정적 객체에 대한 위치 정보를 효과적으로 관리하는 데이터베이스 기술들이 요구된다 본 논문에서는 도로 네트워크 데이터베이스를 위한 인덱싱 및 질의 처리 기술 현황에 대하여 고찰한다. 텔레매틱스에서는 영역 질의, k-최근접 이웃 질의, 연속 k-최근접 이웃 질의, 공간 조인 질의 등이 발생하며, 이 중 k-최근접 이웃 질의가 빈발하게 발생한다. k-최근접 이웃 질의를 처리하기 위한 효과적인 방안으로 IER, INE, $VN^3$, 근사 인덱싱 기법 등이 있다. 본 논문에서는 각 기법의 개념, 알고리즘, 장단점에 대하여 고찰한다.

순차 적응 최근접 이웃을 활용한 결측값 대치법 (On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation)

  • 박소현;방성완;전명식
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1249-1257
    • /
    • 2011
  • 비모수적 결측치 대치법인 k-최근접 이웃(k-Nearest Neighbors; KNN) 대치법을 개선한 적응 최근접 이웃(Adaptive Nearest Neighbor; ANN) 대치법과 순차 k-최근접 이웃(Sequential k-Nearest Neighbor; SKNN) 대치법의 장점들을 결합한 순차 적응 최근접 이웃(Sequential Adaptive Nearest Neighbor; SANN) 대치법을 제안하고자 한다. 이 방법은 ANN 대치법의 장점인 자료의 국소적 특징을 반영할 뿐 아니라, SKNN 대치법과 같이 결측값 대치가 이루어진 개체를 다음 결측값을 대치할 때 사용함으로써 효율성에 개선이 있을 것으로 기대한다.

상호정보 추정을 위한 k-최근접이웃 기반방법 (k-Nearest Neighbor-Based Approach for the Estimation of Mutual Information)

  • 차운옥;허문열
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.977-991
    • /
    • 2008
  • 본 논문에서는 연속형 변수에 대한 결합확률분포를 추정하지 않고도 상호정보(MI) 추정량을 구할 수 있는 k-최근접이웃 기반방법에 대하여 연구하였다. 변수가 동일한 값들을 가지는 경우 k-최근접이웃을 구할 때 생기는 문제점을 해결하기 위하여 지터링(jittering)과 붓스트랩(bootstrap) 방법을 제안하였다. 몬테칼로 모의실험과 실제 데이터에 대한 실험을 수행한 결과, k=1과 같이 작은 값을 사용한 k-최근접이웃 기반방법에 의해 효율적인 MI 추정량을 구할 수 있었다. k-최근접이웃 기반방법은 연속형 설명변수, 범주형 또는 연속형인 목적변수 형태의 데이터에 적용할 수 있으며, 목적변수에 영향을 주는 중요한 설명변수의 순서를 구할 수 있을 뿐만 아니라 다차원에도 적용할 수 있기 때문에 중요변수의 집합을 구하는 변수 선택(feature subset selection) 문제에도 적용할 수 있다.

사례기반추론 모델의 최근접 이웃 설정을 위한 Similarity Threshold의 사용

  • 이재식;이진천
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.588-594
    • /
    • 2005
  • 사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.

  • PDF

k-최근접 이웃 정보를 활용한 베이지안 추론 분류

  • 노영균;김기응;이태훈;윤성로
    • 정보와 통신
    • /
    • 제31권11호
    • /
    • pp.27-34
    • /
    • 2014
  • 본 리뷰 논문에서는 많은 데이터 환경에서 얻어진 k-최근접 이웃들(k-nearest neighbors)의 이론적 성질로부터 어떻게 분류를 위한 알고리즘을 만들어낼 것인가에 대한 여러 가지 방법들을 설명한다. 많은 데이터 환경에서의 최근접 이웃 데이터의 정보는 다양한 기계학습 문제를 푸는데 아주 좋은 이론적인 성질을 가지고 있다. 하지만, 이런 이론적인 특성들이 데이터가 많지 않은 환경에서는 전혀 나타나지 않을 뿐 아니라 오히려 다른 다양한 알고리즘들에 비해 성능이 많이 뒤쳐지는 결과를 보여주고 있다. 본 리뷰 논문에서는 많은 데이터 환경 하에서 k-최근접 이웃들의 정보가 어떤 이론적인 특성을 가지는지 설명하고, 특별히 이런 특성들을 가지고 k-최근접 이웃을 이용한 분류 문제를 어떻게 베이지안 추론(Baysian inference) 문제로 수식화 할 수 있는지 보인다. 마지막으로 현재의 빅데이터 환경에서 실용적으로 사용할 수 있는 알고리즘들을 소개한다.

랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법 (Random projection ensemble adaptive nearest neighbor classification)

  • 강종경;전명식
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.401-410
    • /
    • 2021
  • 판별분류분석에서 널리 이용되는 k-최근접 이웃 분류 방법은 고정된 이웃의 수만을 고려하여 자료의 국소적 특징을 반영하지 못하는 한계가 있다. 이에 자료의 국소적 구조를 고려하여 이웃의 개수를 선택하는 적응 최근접이웃방법이 개발된 바 있다. 고차원 자료의 분석에 있어서는 k-최근접 이웃 분류를 사용하기 전에 랜덤 투영 기법 등을 활용하여 차원 축소를 수행하는 것이 일반적이다. 이렇게 랜덤 투영시킨 다수의 분류 결과들을 면밀히 조합하여 투표를 통해 최종 할당을 하는 기법이 최근 개발된 바 있다. 본 연구에서는 고차원 자료에서의 분석을 위해 적응 최근접이웃방법과 랜덤 투영 앙상블 기법을 조합한 새로운 판별분류 기법을 제안하였다. 제안된 방법은 기존에 개발된 방법에 비해 분류 정확성 측면에서 더 뛰어남을 모의실험 및 실제 사례 분석을 통해 확인하였다.

바이올린과 첼로 연주 데이터를 이용한 분류 알고리즘의 성능 비교 (Performance Comparison of Classification Algorithms in Music Recognition using Violin and Cello Sound Files)

  • 김재천;곽경섭
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.305-312
    • /
    • 2005
  • 음악인식에 주로 사용되는 세 가지 알고리즘의 성능을 비교하였다. 다양한 분류알고리즘을 소개하고 그 중 베이지안법, 최근접이웃법과 k-최근접이웃법을 이용하여 악기를 분류하였다. 악기 샘플파일에서 영교차율, 평균, 분산, 평균피크레벨의 4가지 특성값을 추출하여 분류시스템의 데이터로 사용하였다. 사용된 악기 샘플은 바이올린, 바로크 바이올린, 바로크 첼로이다. 실험결과 최근접이웃 알고리즘이 악기 분류에 있어서 가장 좋은 성능을 보여 주었다. 최근접이웃 알고리즘은 단순하면서도 빠른 계산결과를 보여 악기 분류에 적절한 알고리즘으로 판단되었다.

대규모 데이터를 위한 k-최근접 이웃 학습 기반의 효율적인 협력적 여과 기법 (An Efficient Collaborative Filtering Method Based on k-Nearest Neighbor Learning for Large-Scale Data)

  • 전광성;황규백
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.376-380
    • /
    • 2008
  • 사회의 복잡화와 인터넷의 성장으로 폭발적으로 늘어나고 있는 정보들을 사용자가 모두 검토한 후 여과하기는 어려운 일이다. 이러한 문제를 보완하기 위해서 자동화된 정보 여과 기술이 사용되는데, k-최근접 이웃(k-nearest neighbor) 알고리즘은 그 구현이 간단하며 비교적 정확하여 가장 널리 쓰이고 있는 알고리즘 중 하나이다. k 개의 최근접 이웃들로부터 평가값을 계산하는 데 흔히 쓰이는 방법은 상관계수를 이용한 가중치에 기반하는 것이다. 본 논문에서는 이를 보완하여 대규모 데이터에 대해서도 속도는 크게 저하되지 않으며 정확도는 대폭 향상시킬 수 있는 방법을 적용하였다. 또한, 최근접 이웃을 구하는 거리함수로 다양한 방법을 시도하였다. 영화추천을 위한 실제 데이터에 대한 실험 결과, 속도의 저하는 미미하였으나 정확도에 있어서는 크게 향상된 결과를 가져올 수 있었다.

  • PDF

최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가 (Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis)

  • 심세용;황두성
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.73-81
    • /
    • 2015
  • 이 논문은 프로토타입 선택 방법을 제안하고, 편의-분산 분해를 이용하여 최근접 이웃 알고리즘과 프로토타입 기반 분류 학습의 일반화 성능 비교 평가에 있다. 제안하는 프로토타입 분류기는 클래스 영역 내에서 가변 반지름을 이용한 다차원 구를 정의하고, 적은 수의 프로토타입으로 구성된 새로운 훈련 데이터 집합을 생성한다. 최근접 이웃 분류기는 새 훈련 집합을 이용하여 테스트 데이터의 클래스를 예측한다. 평균 기대 오류의 편의와 분산 요소를 분해하여 최근접 이웃 규칙, 베이지안 분류기, 고정 반지름을 이용한 프로토타입 선택 방법, 제안하는 프로토타입 선택 방법의 일반화 성능을 비교한다. 실험에서 제안하는 프로토타입 분류기의 편의-분산 변화 추세는 모든 훈련 데이터를 사용하는 최근접 이웃 알고리즘과 비슷한 편의-분산 추세를 보였으며, 프로토타입 선택 비율은 전체 데이터의 평균 약 27.0% 이하로 나타났다.