결측치를 대치하는 여러가지 단일대치법 중에서 다변량 정규성 등의 모수적 모형이 만족되지 않을 때에도 강건성(robustness)을 지니는 k-최근접 이웃 대치법(k-nearest neighbors; KNN)이 널리 활용된다. KNN대치법에서 자료의 국소적 특징을 반영한 적응 최근접 이웃(adaptive nearest neighbors; ANN) 대치법과 k개의 최근접 이웃들 중 극단값이나 이상값이 있는 경우 이들의 영향에 덜 민감한 가중 k-최근접 이웃(weighted KNN; WKNN) 대치법의 장점을 결합한 가중 적응 최근접 이웃(weighted ANN; WANN) 대치법을 제안하였다. 또한 모의실험을 통하여 기존의 방법들과 제안한 방법을 비교하였다.
텔레매틱스에서 위치 정보 서비스를 효과적으로 제공하기 위해 이동 객체와 더불어 시설물과 같은 정적 객체에 대한 위치 정보를 효과적으로 관리하는 데이터베이스 기술들이 요구된다 본 논문에서는 도로 네트워크 데이터베이스를 위한 인덱싱 및 질의 처리 기술 현황에 대하여 고찰한다. 텔레매틱스에서는 영역 질의, k-최근접 이웃 질의, 연속 k-최근접 이웃 질의, 공간 조인 질의 등이 발생하며, 이 중 k-최근접 이웃 질의가 빈발하게 발생한다. k-최근접 이웃 질의를 처리하기 위한 효과적인 방안으로 IER, INE, $VN^3$, 근사 인덱싱 기법 등이 있다. 본 논문에서는 각 기법의 개념, 알고리즘, 장단점에 대하여 고찰한다.
비모수적 결측치 대치법인 k-최근접 이웃(k-Nearest Neighbors; KNN) 대치법을 개선한 적응 최근접 이웃(Adaptive Nearest Neighbor; ANN) 대치법과 순차 k-최근접 이웃(Sequential k-Nearest Neighbor; SKNN) 대치법의 장점들을 결합한 순차 적응 최근접 이웃(Sequential Adaptive Nearest Neighbor; SANN) 대치법을 제안하고자 한다. 이 방법은 ANN 대치법의 장점인 자료의 국소적 특징을 반영할 뿐 아니라, SKNN 대치법과 같이 결측값 대치가 이루어진 개체를 다음 결측값을 대치할 때 사용함으로써 효율성에 개선이 있을 것으로 기대한다.
Communications for Statistical Applications and Methods
/
제15권6호
/
pp.977-991
/
2008
본 논문에서는 연속형 변수에 대한 결합확률분포를 추정하지 않고도 상호정보(MI) 추정량을 구할 수 있는 k-최근접이웃 기반방법에 대하여 연구하였다. 변수가 동일한 값들을 가지는 경우 k-최근접이웃을 구할 때 생기는 문제점을 해결하기 위하여 지터링(jittering)과 붓스트랩(bootstrap) 방법을 제안하였다. 몬테칼로 모의실험과 실제 데이터에 대한 실험을 수행한 결과, k=1과 같이 작은 값을 사용한 k-최근접이웃 기반방법에 의해 효율적인 MI 추정량을 구할 수 있었다. k-최근접이웃 기반방법은 연속형 설명변수, 범주형 또는 연속형인 목적변수 형태의 데이터에 적용할 수 있으며, 목적변수에 영향을 주는 중요한 설명변수의 순서를 구할 수 있을 뿐만 아니라 다차원에도 적용할 수 있기 때문에 중요변수의 집합을 구하는 변수 선택(feature subset selection) 문제에도 적용할 수 있다.
사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.
본 리뷰 논문에서는 많은 데이터 환경에서 얻어진 k-최근접 이웃들(k-nearest neighbors)의 이론적 성질로부터 어떻게 분류를 위한 알고리즘을 만들어낼 것인가에 대한 여러 가지 방법들을 설명한다. 많은 데이터 환경에서의 최근접 이웃 데이터의 정보는 다양한 기계학습 문제를 푸는데 아주 좋은 이론적인 성질을 가지고 있다. 하지만, 이런 이론적인 특성들이 데이터가 많지 않은 환경에서는 전혀 나타나지 않을 뿐 아니라 오히려 다른 다양한 알고리즘들에 비해 성능이 많이 뒤쳐지는 결과를 보여주고 있다. 본 리뷰 논문에서는 많은 데이터 환경 하에서 k-최근접 이웃들의 정보가 어떤 이론적인 특성을 가지는지 설명하고, 특별히 이런 특성들을 가지고 k-최근접 이웃을 이용한 분류 문제를 어떻게 베이지안 추론(Baysian inference) 문제로 수식화 할 수 있는지 보인다. 마지막으로 현재의 빅데이터 환경에서 실용적으로 사용할 수 있는 알고리즘들을 소개한다.
판별분류분석에서 널리 이용되는 k-최근접 이웃 분류 방법은 고정된 이웃의 수만을 고려하여 자료의 국소적 특징을 반영하지 못하는 한계가 있다. 이에 자료의 국소적 구조를 고려하여 이웃의 개수를 선택하는 적응 최근접이웃방법이 개발된 바 있다. 고차원 자료의 분석에 있어서는 k-최근접 이웃 분류를 사용하기 전에 랜덤 투영 기법 등을 활용하여 차원 축소를 수행하는 것이 일반적이다. 이렇게 랜덤 투영시킨 다수의 분류 결과들을 면밀히 조합하여 투표를 통해 최종 할당을 하는 기법이 최근 개발된 바 있다. 본 연구에서는 고차원 자료에서의 분석을 위해 적응 최근접이웃방법과 랜덤 투영 앙상블 기법을 조합한 새로운 판별분류 기법을 제안하였다. 제안된 방법은 기존에 개발된 방법에 비해 분류 정확성 측면에서 더 뛰어남을 모의실험 및 실제 사례 분석을 통해 확인하였다.
음악인식에 주로 사용되는 세 가지 알고리즘의 성능을 비교하였다. 다양한 분류알고리즘을 소개하고 그 중 베이지안법, 최근접이웃법과 k-최근접이웃법을 이용하여 악기를 분류하였다. 악기 샘플파일에서 영교차율, 평균, 분산, 평균피크레벨의 4가지 특성값을 추출하여 분류시스템의 데이터로 사용하였다. 사용된 악기 샘플은 바이올린, 바로크 바이올린, 바로크 첼로이다. 실험결과 최근접이웃 알고리즘이 악기 분류에 있어서 가장 좋은 성능을 보여 주었다. 최근접이웃 알고리즘은 단순하면서도 빠른 계산결과를 보여 악기 분류에 적절한 알고리즘으로 판단되었다.
사회의 복잡화와 인터넷의 성장으로 폭발적으로 늘어나고 있는 정보들을 사용자가 모두 검토한 후 여과하기는 어려운 일이다. 이러한 문제를 보완하기 위해서 자동화된 정보 여과 기술이 사용되는데, k-최근접 이웃(k-nearest neighbor) 알고리즘은 그 구현이 간단하며 비교적 정확하여 가장 널리 쓰이고 있는 알고리즘 중 하나이다. k 개의 최근접 이웃들로부터 평가값을 계산하는 데 흔히 쓰이는 방법은 상관계수를 이용한 가중치에 기반하는 것이다. 본 논문에서는 이를 보완하여 대규모 데이터에 대해서도 속도는 크게 저하되지 않으며 정확도는 대폭 향상시킬 수 있는 방법을 적용하였다. 또한, 최근접 이웃을 구하는 거리함수로 다양한 방법을 시도하였다. 영화추천을 위한 실제 데이터에 대한 실험 결과, 속도의 저하는 미미하였으나 정확도에 있어서는 크게 향상된 결과를 가져올 수 있었다.
이 논문은 프로토타입 선택 방법을 제안하고, 편의-분산 분해를 이용하여 최근접 이웃 알고리즘과 프로토타입 기반 분류 학습의 일반화 성능 비교 평가에 있다. 제안하는 프로토타입 분류기는 클래스 영역 내에서 가변 반지름을 이용한 다차원 구를 정의하고, 적은 수의 프로토타입으로 구성된 새로운 훈련 데이터 집합을 생성한다. 최근접 이웃 분류기는 새 훈련 집합을 이용하여 테스트 데이터의 클래스를 예측한다. 평균 기대 오류의 편의와 분산 요소를 분해하여 최근접 이웃 규칙, 베이지안 분류기, 고정 반지름을 이용한 프로토타입 선택 방법, 제안하는 프로토타입 선택 방법의 일반화 성능을 비교한다. 실험에서 제안하는 프로토타입 분류기의 편의-분산 변화 추세는 모든 훈련 데이터를 사용하는 최근접 이웃 알고리즘과 비슷한 편의-분산 추세를 보였으며, 프로토타입 선택 비율은 전체 데이터의 평균 약 27.0% 이하로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.