DOI QR코드

DOI QR Code

A Comparative Study on Species Richness and Land Suitability Assessment - Focused on city in Boryeong -

종풍부도와 세분화된 관리지역 비교 연구 - 보령시를 대상으로 -

  • Shin, Manseok (National Institute of Ecology) ;
  • Jang, Raeik (Department of Landscape Architecture, Chonbuk National University) ;
  • Seo, Changwan (National Institute of Ecology) ;
  • Lee, Myungwoo (Department of Landscape Architecture, Chonbuk National University)
  • Received : 2014.10.29
  • Accepted : 2015.01.13
  • Published : 2015.02.28

Abstract

The purposes of this study are to apply species distribution modeling in urban management planning for habitat conservation in non-urban area and to provide a detailed classification method for management zone. To achieve these objectives, Species Distribution Model was used to generate species richness and then to compare with the results from land suitability assessment. 59 species distribution models were developed by Maxent. This study used 15 model variables (5 topographical variables, 4 vegetation variables, and 6 distance variables) for Maxent models. Then species richness was created by sum of predicted species distributions. Land suitability assessment was conducted with criteria from type I of "Guidelines for land suitability assessment". After acquiring evaluation values from species richness and land suitability assessment, the results from these two models were compared according to the five grades of classification. The areas with the identical grade in Species richness and land suitability assessment are categorized and then compared each other. The comparison results are Grade1 10.92%, Grade2 37.10%, Grade3 34.56%, Grade4 20.89% and Grade5 1.73%. Grade1 and Grade5 showed the lowest agreement rate. Namely, development or conservation grade showed high disagreement between two assessment system. Therefore, the areas located between urban, agriculture, forest, and reserve have a tendency to change easily by development plans. Even though management areas are not the core area of reserve, it is important to provide a venue for species habitat and eco-corridor to protect and improve biodiversity in terms of landscape ecology. Consequently, adoption of species richness in three levels of management area classification such as conservation, production, planning should be considered in urban management plan.

본 연구는 비도시지역의 생물종 서식지 보전을 위해 반영할 수 있는 생물종 관련 지표의 개발과 관리지역 세분화 방안을 제시하는데 목적이 있다. 이를 위해 생물종 서식분포를 예측한 후에 예측된 서식분포를 활용하여 종풍부도를 만들고 그 결과를 토지적성평가와 비교를 하였다. 종분포도는 59종을 대상으로 Maxent 모형을 사용하였고 15개의 모형변수(5개 지형변수, 4개 식생변수, 6개 거리변수)를 활용하였다. 예측된 생물종 서식분포를 출현/비출현으로 구분한 후 합산하여 종풍부도를 예측 하였다. 토지적성평가는 평가체계 I에 따라 보전, 농업, 개발적성을 물리적, 지역, 공간적 입지 특성별로 평가하였다. 종풍부도 등급과 토지적성평가 등급과의 비교결과는 1등급은 10.92%, 2등급은 37.10%, 3등급은 34.56%, 4등급은 20.89% 그리고 5등급은 1.73%의 면적 일치도가 나타났다. 보전관리지역으로 분류되는 1등급과 계획관리지역으로 분류되는 5등급의 일치도가 가장 낮았다. 이처럼 계획관리지역으로 분류되어도, 종풍부도를 고려해 보면 많은 계획관리지역이 상대적으로 높은 종풍부도 값을 보여주었다. 관리지역은 생물종 서식지의 핵심지역은 아니지만 경관생태학적 관점에서 주변 서식처, 이동통로 등을 제공하면서 생물다양성 보호에 기여 할 수 있다. 따라서 도시관리계획에서 잠재적 생물종 서식분포를 고려하는 노력이 보다 집중되어야 할 것이다.

Keywords

References

  1. 국토연구원. 2003. 토지적성평가 매뉴얼(Land Suitability Assessment Manual). (Korea Research Institute for Human Settlements. 2003. Land Suitability Assessment Manual.)
  2. 국토해양부. 2009. 토지적성평가 제도의 실효성 제고방안에 관한 연구. (Ministry of Land, Transport and Maritime Affairs. 2009. A Study on the Scheme to increase the Efficiency of the Land Suitability Assessment.)
  3. 권혁수. 2011. 보호지역계획을 위한 생물다양성 통합평가모형 -지리산과 덕유산, 가야산 권역을 대상으로, 서울대학교 대학원 박사학위논문. (Kwon HS. 2011. Integrated Evaluation Model of Biodiversity for Conservation Planning: Focused on Mt. Jiri, Mt. Deokyu and Mt. Gaya regions, Ph.D dissertation, Seoul National University, Seoul, Korea.)
  4. 권혁수, 서창완, 박종화. 2012. 지리산 지역의 생물종 분포모형 구축 및 종풍부도 평가, 한국지형공간정보학회지, 20(3), 11-18. (Kwon HS, Seo CW, Park CH. 2012. Development of Species Distribution Models and Evaluation of Species Richness in Jirisan region, The Korean Society for GeoSpatial Information System, 20(3), 11-18.) https://doi.org/10.7319/kogsis.2012.20.3.011
  5. 김인현, 오규식, 양희범. 2009. 토지적성평가 지표의 개선방안 연구 -평가체계II를 중심으로-, 한국공간정보학회지, 17(2), 201-212. (Kim IH, Oh KS, Yang HB. 2009. Improving the Grading indices for Land Suitability Assessment, The Journal of GIS Association of Korea, 17(2), 201-212.)
  6. 김지연, 서창완, 권혁수, 류지은, 김명진. 2012. 전국자연환경조사 자료를 이용한 종분포모형 연구, 환경영향평가, 21(4), 593-607.(Kim J, Seo C, Kwon H, Ryu J, Kim M. 2012. A Study on the Species Distribution Modeling using National Ecosystem Survey Data, Environmental Impact Assessment, 21(4), 593-607.) https://doi.org/10.14249/EIA.2012.21.4.593
  7. 박영수. 2010. 토지적성평가시 지역특성을 고려한 대체지표 적용에 관한 연구, 조선대학교 대학원 박사학위논문. (Park YS. 2010. A Study on Alternative Index Application with Consideration of Regional Characteristics given Land Suitability Assessment, Ph.D dissertation, Chosun University, Gwangju, Korea.)
  8. 보령시. 2011. 보령시 생태(비오톱)지도. (Boryeong. 2011. Boryeong biotope map.)
  9. 송원경, 김은영. 2012. 고라니 서식지 분석을 위한 기계학습식 종분포모형 비교, 대한원격탐사학회지, 28(1), 171-180. (Song W, Kim E. 2012. A Comparison of Machine Learning Species Distribution Methods for Habitat Analysis of the Korea Water Deer (Hydropotes inermis argyropus), Korean Journal of Remote Sensing, 28(1), 171-180.) https://doi.org/10.7780/kjrs.2012.28.1.171
  10. 서창완, 박종화. 2000. GIS와 로지스틱 회귀분석을 이용한 멧돼지 서식지 모형 개발. 한국공간정보학회지, 8(1), 85-99. (Seo CW, Park CH. 2000. Wild Boar (Sus Scrofa coreanus Heoude) Habitata Modeling Using GIS and Logistic Regression. The Journal of GIS Association of Korea, 8(1), 85-99.)
  11. 서창완, 최태영, 최윤수, 김동영. 2008. 설악산 산양을 대상으로 한 야생동물 서식지 적합성 모형에 관한 연구, 한국환경복원기술학회지, 11(3), 28-38. (Seo CW, Choi TY, Choi YS, Kim DY. 2008. A Study on Wildlife Habitat Suitability Modeling for Goral (Nemorhaedus caudatus raddeanus) in Seoraksan National Park, The Korea Society For Environmental Restoration And Revegetation Technology, 11(3), 28-38.)
  12. 이동근, 전성우, 이상문. 2004. 토지환경성평가의 이론 및 기준.지도작성에 관한 연구, 한국환경복원기술학회지, 7(1), 116-127. (Lee DK, Jeon SW, Lee SM. 2004. Theoretical Review of Environment-Oriented Land Suitability Analysis and Setting of EOLSA Criteria and Classification System, Journal of the Korea Society of Environmental Restoration Technology, 7(1), 116-127.)
  13. 이동근, 김호걸. 2010. Maxent 모형을 이용한 서식지 잠재력 평가 -하천으로부터의 거리, 하천의 차수, 토지이용을 중심으로, 한국환경복원기술학회지, 13(6), 161-172. (Lee DK, Kim HG. 2010. Habitat Potential Evaluation Using Maxent Model - Focused on Riparian Distance, Stream Order and Land Use, The Korea Society For Environmental Restoration And Revegetation Technology, 13(6), 161-172.)
  14. 이명진, 전성우, 이종수, 강병진, 송원경. 2007. 대축척 국토환경성평가지도 작성방안 연구, 환경정책연구, 6(3), 115-145. (Lee M, Jeon S, Lee C, Kang B, Song W. 2007. A Study on Basic Plan for Upscaling Environmental Conservation Value Assessment Map(ECVAM) of National Land in South Korea, Environmental Policy Research, 6(3), 115-145.)
  15. 이종용, 이용범. 2004. 효율적인 토지적성평가를 위한 격자 평가단위 적용에 관한 연구, 대한국토.도시계획학회지 국토계획 39(7), 97-110. (Lee JY, Lee YB. 2004. Applying the Grid Unit for the Land Suitability Assesment in Korea, Korea Planners Association, 39(7), 97-110.)
  16. 정연우, 박신원, 최대식. 2012. 토지적성평가 평가 지표 및 평가방법 개선방안 연구 - 평가체계 II를 중심으로-, 47(2), 65-83. (Jeong YW, Park SW, Choi DS. 2012. A Study on the Improvement of the Assessment Criteria and Method of the Land Suitability Assessment - focused on Type II of the Land suitability Assessment, Korea Planners Association, 47(2), 65-83.)
  17. 채미옥, 오용준. 2003. 토지적성평가의 지표추출 및 지표별 가중치 분석방법 고찰, 대한지리학회지 38(5), 725-740.(Chae MO, Oh YJ. 2003. A Study on the Land Suitability Assessment Methods for Effective Land Management, The Korean GEographical Society, 38(5), 725-740.)
  18. 한국환경정책.평가연구원. 2010. 환경성 평가에 있어서 서식지 조사 및 보전방안. (Korea Environment Institute. 2010. A Framework for Incorporating Wildlife Habitat Survey and Conservation Measures in Environmental Assessment.)
  19. Beazley K, Smandych L, Snaith T, Machkinnon F, Austen-smith P, Duinker P. 2005. Biodiversity Considerations in Conservation System Planning: Map-based Approach for Noca Scotia, Canada, Ecological Applications, 15(6), 2192-2208. https://doi.org/10.1890/03-5270
  20. Elith J, Catherine R, Dudik M, Ferrier SGA, Huettmann F, John LA, Li J, Lucia B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Jacob A, Steven RK, Scachetti-pereira R, Soberon J, Williams S M and N. 2006. Novel methods improveprediction of species' distribution from occurrence data. Ecography 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  21. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. 2011. A Statistical Explanation of MaxEnt for Ecologists, Diversity and Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  22. Ferrier S. 2002. Mapping Spatial Pattern in Biodiversity for Regional Conservation Planning: Where to fron Here?, Systematic Biology, 51(2), 331-363. https://doi.org/10.1080/10635150252899806
  23. Franklin J. 2009. Mapping species distributions spatial inference and prediction -Spatial inference and prediction-, Cambridge University Press.
  24. Garcia A. 2006. Using Ecological Niche Modelling to Identify Diversity Hotspots for the Herpetofauna of Pacific Lowlands and Adjacent Interior Valleys of Mexico, Biological Conservation, I(30), 25-46.
  25. Miller JR, Turner MG, Smithwick EAH, Dent CL, Stanley EH. 2004. Spatial Extrapolation: The Science of Predicting Ecological Patterns and Processes, BioScience, 54(4), 310-320. https://doi.org/10.1641/0006-3568(2004)054[0310:SETSOP]2.0.CO;2
  26. Newbold T, Gilbert F, Zalat S, El-Gabbas A, Reader T. 2009. Climate-based models of spatial patterns of speccies richness in Egypt's butterfly and mammal fauna, Journal of Biogeography, 36, 2085-2095. https://doi.org/10.1111/j.1365-2699.2009.02140.x
  27. Peters DPC, Herrick JE, Urban DL, Gardner RH, Breshears DD. 2004. Strategies for ecological extrapolation, Oikos, 106(3), 627-636. https://doi.org/10.1111/j.0030-1299.2004.12869.x
  28. Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions, Ecological Modelling 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  29. Pineda E, Lobo JM. 2009. Assessing the Accuracy of Species Distribution Models to Predict Amphibian Species Richness Patterns, Journal of Animal Ecology, 78(1), 182-190. https://doi.org/10.1111/j.1365-2656.2008.01471.x
  30. Pineda E, Lobo JM. 2012. The Performance of Range Maps and Species Distribution Models Representing the Geographic Variation of Species Richness at Different Resolutions, Global Ecology and Biogeography, 21, 935-944. https://doi.org/10.1111/j.1466-8238.2011.00741.x
  31. Pressey RL, Humphries CJ, Margules CR, Vane-Wright RI, Willians PH. 1993. Beyond Opportunism: Key Principles for Systematic Reserve Selection, Trends in Ecology&Evolution, 8(4), 124-128. https://doi.org/10.1016/0169-5347(93)90023-I
  32. Thorn JS, Nijman V, Smith D, Nekaris KAI. 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates:Nycticebus), Diversity and Distributions, 15(2), 289-298. https://doi.org/10.1111/j.1472-4642.2008.00535.x

Cited by

  1. Prediction on Habitat Distribution in Mt. Inwang and Mt. An Using Maxent vol.25, pp.6, 2016, https://doi.org/10.14249/eia.2016.25.6.432
  2. 분산 능력을 고려한 기후변화에 따른 붉가시나무의 잠재서식지 분포변화 예측연구 vol.27, pp.3, 2015, https://doi.org/10.14249/eia.2018.27.3.291
  3. 토양유실을 고려한 양서파충류의 서식지 관리지역 선정방법 vol.21, pp.6, 2015, https://doi.org/10.13087/kosert.2018.21.6.55
  4. 한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구 vol.27, pp.6, 2018, https://doi.org/10.14249/eia.2018.27.6.562