DOI QR코드

DOI QR Code

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads

불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석

  • Park, Hyung Seok (Department of Environmental Engineering, Chungbuk National University) ;
  • Choi, Hwan Gyu (National Institue of Environmental Research) ;
  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2014.08.08
  • Accepted : 2015.01.07
  • Published : 2015.02.28

Abstract

Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

불투수면(IC)이란 빗물 등의 강수가 토양 속으로 침투할 수 없는 포장 지역이라 정의할 수 있으며, 일반적으로 도시화 과정에서 형성되는 불투수면은 주로 도로(Drive way), 인도(Sidewalk), 주차장(Parking lot), 건물의 지붕(Roof) 등의 형태로 나타난다. 불투수면의 증가는 유출계수를 증가시켜 강수의 침투량 및 지하수 수위를 감소시킨다. 이로 인해 홍수기에 직접 유출량과 홍수피해를 증가시키고, 갈수기에는 하천의 건천화를 유발하여 수생태계를 악화시킨다. 미국 환경부에서는 불투수면을 저감하기 위한 주요정책으로 LID(Low Impact Development) 또는 GI(Green Infrastructure)의 도입을 제시하고 있다. 본 연구에서는 도시 유역의 강우-유출 및 수질 해석을 위해 SWMM모형을 구축하고, 도시 유역의 대표적인 토지이용 유형에서 불투수면 영향 저감을 위한 다양한 LID 기법을 적용하고 그 효과를 평가하였다. 모형의 보정기간은 2009년 7월 17일, 검정기간은 2009년 8월 11일이며, 강우유출발생시 측정한 실측 데이터를 사용하여 검 보정을 하였다. 아파트, 학교, 도로, 공원 등으로 구성된 복합용지에 투수성 포장(Pervious cover)과 옥상녹화(Green roof)기법을 단계별로 적용하고 유출량 및 오염부하 저감에 미치는 영향을 모의한 결과, 유역 내 불투수면이 투수면으로 전환되는 비율이 증가함에 따라 강우시 발생하는 유출량과 오염물질 부하량의 저감 효과가 큰 것으로 나타났다. 특히, 건물 옥상 녹화 및 주차장과 도로에 투수성 포장을 적용한 경우, 총 유출량은 15~61 %의 저감효과를 보였으며, 오염부하량에 대해서는 TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 %의 저감효율을 나타냈다.

Keywords

References

  1. 김성준. 박근애, 전무갑. 2005. 토지이용의 변화가 홍수유출에 미치는 영향분석. 한국수자원학회지, 38(4), pp. 301-311.(Kim S, Park G, Chun M. 2005. Analysis of Runoff Impact by Land Use Change - Using Grid Based Kinematic Wave Storm Runoff Model (KIMSTORM). Journal of Korea Water Resources Association, 38(4), pp. 301-311.) https://doi.org/10.3741/JKWRA.2005.38.4.301
  2. 박준호, 유용규, 박영곤, 윤희택, 김종건, 박윤식, 전지홍, 임경재. 2008. SWMM을 이용한 춘천 거두 1지구의 LID 개념 적용으로 인한 유출 감소 특성 분석. 수질보전한국물환경학회지, 24(6), pp. 806-816. (Park J, Yoo Y, Park Y, Yoon H, Kim J, Park Y, Jeon J, Lim KJ. 2008. Analysis of Runoff Reduction with LID Adoption using the SWMM. Jounal of Korean Society on water Quality, 24(6), pp. 806-816.)
  3. 백종락, 김환석, 박기정, 윤재영. 2014. SWMM 모형을 이용한 식생저류지의 오염물질 저감효율 평가. 한국물환경학회.대한상하수도학회 공동춘계 학술발표논문집. pp. 600-601. (Beak J, Kim H, Pak G, Yoon J. 2014. Evaluation of Bioretention performance using EPA's SWMM. Jounal of Korean Society on water Quality. 2014. pp. 600-601.)
  4. 여규동, 정영훈. 2013. 도시지역의 옥상녹화에 따른 유출저감효과 분석과 비용 산정, 서울도시연구, 14(2), pp. 161-177. (Yeo K, Jung Y. 2013. An Analysis of Effect of Green roofs in Urbanized Areas on Runoff Alleviation and Cost Estimation, Reserch of City Seoul. 14(2), pp. 161-177.)
  5. 전지홍, 최동혁, 김태동. 2009. 지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가. 한국물환경학회, 25(1), pp. 58-68. (Jeon J, Choi D, Kim T. 2009. LIDMOD Development of Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads. Jounal of Korean Society on water Quality, 25(1), pp. 58-68.)
  6. 주명호. 2009. 도시 소유역에서의 우수에 의한 오염부하 산정을 위한 자동 Monitoring System의 구축과 SWMM의 적용. 충남대학원 석사학위 청구논문. (Joo M. 2009. Application of SWMM and establishment of anto monitoring system to evaluate small urban nonpoint source pollutan.)
  7. 최지용, 김병익, 박백수, 정은성. 2008. 물 환경관리를 위한 불투수면 지표의 적용성 연구, 수질보전한국물환경학회지, 24(6), pp. 767-772. (Choi J, Kim B, Park B, Chung E. 2008. Applicability of Impervious Cover Index of Water Environment Management. Jounal of Korean Society on water Quality, 24(6), pp. 767-772.)
  8. 한강수계관리위원회. 2007. 수계별 유역의 불투수율조사 및 저감방안 연구(1차년 최종보고서), pp. 219-223. (The management committee of Han River Hydrosphere. 2007. A research on investigation and management of watershed imperviousness. pp. 219-223.)
  9. 함광준, 김준현, 허범녕, 최지용, 김영진. 2006. 유역의 불투수성에 따른 강우유출특성 비교. 환경영향평가학회지, 15(2), pp. 157-163. (Ham K, Kim J, Huh B, Choi J, Kim Y. 2006. The watershed Imperviousness Impact for the characteristic of Stormwater runoff.. Journal of Environmental Impact Assessment, 15(2), pp. 157-163.)
  10. Barry NW, Reddish DJ. 1989. Subsidence occurrence, prediction and control. Elservier. Amsterdam, Developments in Geotechnical Engineering.
  11. Bernard E, James GH. 2009. L-THIA LID Long-term Hydrologic Impact Assessment Low Impact Development Model. Spreadsheet Version. Purdue University.
  12. Burszta-Adamiak E, Mrowiec M. 2013. Modelling of green roofs 'hydrologic performance using EPA''s SWMM. Water Science&Technology, 68(1), pp. 36-42.
  13. Chester L, Arnold Jr. and C, James G. 1996. Impervious surface coverage : The emergence of a key environmental indicator. Journal of the American Planning Association, 6(2), pp. 243-258.
  14. Christopher P, Meredith PW, Thomas J, James L Jr.b, Jeremy S, Philip G, Randall F, William S, Eric M. 2011. Assessment of low impact development for managing stormwater with changing precipitation due to climate change, Landscape Urban Planning, 103(2), pp. 166-173. https://doi.org/10.1016/j.landurbplan.2011.07.006
  15. Chung SW, Gassman PW, Gu R, Kanwar RS. 2002. Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems. Transactions of the ASAE,45(4), pp. 113-122.
  16. Chung SW, Gassman PW, Kramer LA, Williams JR, Gu R. 1999. Validation of EPIC for two watersheds in southwest Iowa. J. of Environmental Quality, 28(3), pp. 971-979. https://doi.org/10.2134/jeq1999.00472425002800030030x
  17. David RL, Gregory JM Jr. 1999. Evaluating the use of "goodness of fit" measures in hydrologic and hydro-climatic model validation. Water Resource Research, 35(1), pp. 233-241. https://doi.org/10.1029/1998WR900018
  18. Derek BB, Lorin ER. 1993. Consequences of urbanization on aquatic system: Measured Effect, Degradation Thresholds, and Corrective Strategies, Watershed '93 A National Conference on Watershed Management. U. S. Environmental Protection Agency. pp. 545-550.
  19. Elizabeth B, Stacey S, Paul LR. 2002. Impervious surface and water quality: A review of current literature and its implications for watershed planning. J. of Planning Literature, 16(4), pp. 499-514. https://doi.org/10.1177/088541202400903563
  20. Elliotta AH, Trowsdaleb SA. 2007. "A review of models for lowimpact urban stormwater drainage." Environ. Model. Software, 22(3), pp. 394-405. https://doi.org/10.1016/j.envsoft.2005.12.005
  21. Green CH, Tomer MD, Luzio MD, Arnold JG. 2006. Hydrologic evaluation of the soil and water assessment tool for a large tiledrained watershed in Iowa. Transactions of the ASAE, 49(2), pp. 413-422. https://doi.org/10.13031/2013.20415
  22. http://water.epa.gov/polwaste/green/
  23. John G. 1991. Thermal Impacts Associated With Urbanization and Stormwater Management Best Management Practices. Metropolitan Washington Council of Governments. Maryland Department of Environment. Washington, D.C.
  24. Jones RC, Christopher CC. 1987. Impact of watershed urbanization on stream insect communities. American Water Resources Association, 23(6), pp. 1047-1056. https://doi.org/10.1111/j.1752-1688.1987.tb00854.x
  25. Laurent A, Indrajeet C, Bernard E, Keith C, Venkatesh M. 2013. Estimation of annual baseflow at ungauged sites in Indiana USA. Journal of Hydrology, 476, pp. 13-27. https://doi.org/10.1016/j.jhydrol.2012.10.002
  26. Lewis AR. 2008. Storm water manangement model User's manual version 5.0
  27. Marlene S, Ataur R, Garry R. 2014. Modeling of a lot scale rainwater tank system in XP-SWMM: A case study in Western Sydney, Australia. Journal of Environmental Management, 141, pp. 177-189. https://doi.org/10.1016/j.jenvman.2014.02.013
  28. Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual model; Part1 - A discussion of principles. J. of Hydrology, 10(3), pp. 398-409.
  29. Qin H, Li Z, Fu G. 2013. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, pp. 577-585. https://doi.org/10.1016/j.jenvman.2013.08.026
  30. Ramanarayanan TS, Williams JR, Dugas WA, Hauck LM, McFarland AMS. 1997. Using APEC to identify alternative practiced for animal waste management. ASAE Paper.
  31. Richard DK. 1979. Urbanization and stream quality impairment. Water Resources Bulletin. American Water Resources Association, 15, pp. 948-963. https://doi.org/10.1111/j.1752-1688.1979.tb01074.x
  32. Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001a. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. of the American Water Resources Association, 37(5), pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  33. Santhi C, Arnold JG, Williams JR, Hauck LM, Dugas WA. 2001b. Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE, 44(6), pp. 1559-1570.
  34. Santosh MP, Mahesh KJ, Deepak K. 2013. "Integrated urban watermanagement modelling under climate change scenarios." Resour. Conserv. Recycl, 83, pp. 176-189.
  35. Shaver EMJ, Curtis G, Carter D. 1995. Watershed protection using an integrated approach. In Stormwater NPDES Related Monitoring Needs. Engineering Foundation, America Society of Civil Engineers.
  36. Thomas RS. 1987. Controlling Urban Runoff- A Practical Manual for Planning and Designing Urban Best Management Practices. Metropolitan Washington Council of Goverments.
  37. Thomas RS. 1994. The importance of imperviousness. Watershed Protection Techniques, Center for Watershed Protection, 1(3), pp. 100-111.
  38. USDA-SCS(U.S. Department of Agriculture-Soil Conservation Service). 1986. Urban Hydrology for small Watersheds. Technical Release No.55. U.S. Goverment Printing Office.
  39. Wayne CH, Robert ED. 1988. Storm Water Management Model version 4; User's Manual. University of Florida, Gainesville. USA. Department of Environmental Engineering Sciences.
  40. Zahra Z, Steven JB, Mohammad K, F.ASCE, Hassan T, Erfan G. 2014. Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff : Case Study of New York City. J. Irrig. Drain Eng. 04014043. 1-13.

Cited by

  1. Runoff simulation of two typical urban green land types with the Stormwater Management Model (SWMM): sensitivity analysis and calibration of runoff parameters vol.191, pp.6, 2015, https://doi.org/10.1007/s10661-019-7445-9