DOI QR코드

DOI QR Code

Evaluation of Soil Organic Carbon of Upland Soil According to Fertilization and Agricultural Management Using DNDC Model

DNDC 모형을 이용한 시비와 영농관리에 따른 밭포장의 토양유기탄소 변동 평가

  • Lee, Kyoungsook (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Yoon, Kwangsik (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Choi, Dongho (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Jung, Jaewoon (Yeongsan River Environment Research Center) ;
  • Choi, Woojung (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Lim, Sangsun (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
  • 이경숙 (전남대학교 지역.바이오시스템공학과) ;
  • 윤광식 (전남대학교 지역.바이오시스템공학과) ;
  • 최동호 (전남대학교 지역.바이오시스템공학과) ;
  • 정재운 (국립환경과학원 영산강물환경연구소) ;
  • 최우정 (전남대학교 지역.바이오시스템공학과) ;
  • 임상선 (전남대학교 지역.바이오시스템공학과)
  • Received : 2014.09.26
  • Accepted : 2014.12.31
  • Published : 2015.02.28

Abstract

To mitigate the impacts of climate change on agricultural ecosystems, development of agricultural management for enhanced soil carbon sequestration is required. In this study, the effects of fertilizer types (chemical fertilizer and manure compost), cropping systems, and crop residue management on SOC(Soil Organic Carbon) sequestration were investigated. Summer corn and winter barley were cultivated on experimental plots under natural rainfall conditions for two years with chemical fertilizer and manure compost. Soil samples were collected conducted and analyzed for SOC for soil. To estimate long-term variation patterns of SOC, DNDC was run with the experimental data and the weather input parameters from 1981 to 2010. DNDC simulation demonstrated SOC reduction by chemical fertilizer treatment unless plant residues are returned; whereas compost treatments increased SOC under the same conditions and SOC increment was proportional to compost application rate. In addition, SOC further increased under corn-barley cropping system over single corn cropping due to more compost application. Regardless of nutrient input type, residue return increased SOC; however, the magnitude of SOC increase by residue return was lower than by compost application.

농업생태계에 대한 기후변화의 영향을 경감시키기 위해 토양탄소격리를 증대시키기 위한 영농관리기법 개발이 요구되고 있다. 본 연구에서는 토양유기탄소에 대한 비종(화학비료와 퇴비), 작부체계, 작물잔사관리의 영향을 조사하였다. 화학비료와 퇴비 시험포를 조성하여 자연 강우 조건에서 옥수수-보리를 2년동안 재배하고 토양내 SOC의 분석을 위해 토양샘플링을 실시하였다. 영농관리에 따른 SOC의 장기변화 패턴을 추정하기 위해 DNDC모형을 1981년부터 2010년까지 기상자료와 실험자료 기반 매개변수로 모의하였다. DNDC 모의에 의하면 화학비료 처리구에서는 작물잔사 환원이 없으면 SOC가 감소하는 것으로 나타났다. 반면 퇴비 처리구에서는 같은 조건에서 SOC가 증가하였고, SOC의 증가는 퇴비의 시비율에 비례하였다. 또한 SOC는 투입된 퇴비량의 증가로 인해 옥수수 단작보다 옥수수-보리 작부체계에서 더 증가하였다. 비종에 관계없이 작물잔사의 토양환원은 SOC 증가를 가져왔지만, 퇴비시용의 경우 잔사환원 효과는 작은 것으로 나타났다.

Keywords

References

  1. 강동환, 김성수, 권병혁, 김일규. 2008. 고흥만 인공습지의 토양 유기탄소와 이산화탄소 변동 관측, 수산해양교육연구지 20(1), 58-67. (Kang DH, Kim SS, Kwon BH, Kim IK. 2008. Observations of variations in soil organic carbon and carbon dioxide in the constructed wetland at Goheung bay, Jour. Fish. Mar. Sci. Edu. 20(1), 58-67.)
  2. 김건엽, 서상욱, 고병구, 정현철, 노기안, 심교문. 2008. 보리-고추와 보리-콩 작부체계에서 이산화 탄소수지 평가, 한국토양비료학회지 41(6), 408-414. (Kim GY, Suh SU, Ko BG, Jeong HC, Roh KA, Shim KM. 2008. Evaluation of $CO_2$ balance in the barley-red pepper and barley-soybean cropping system, Korean J. Soil Sci. Fert. 41(6), 408-414.)
  3. 김상민. 2004. 비점오염 모형을 이용한 하수처리수재이용에 따른 유역 오염총량 영향분석. (Kim SM. 2004. Analysis of wastewater reuse effects on TMDL using nonpoint source pollution models, Ph.D dissertation, Seoul national university, Korea.)
  4. 정기열, 이창훈, 이재생, 고지연, 최영대, 윤을수. 2008. 벼-보리 이모작 작부체계가 토양 탄소 함량에 미치는 영향, 한국환경농학회 학술발표논문집 1, 130-130.(Jung KY, Lee CH, Lee JS, Ko JY, Choi YD,Yun ES. 2008. Effects of rice-barelycropping systems on soil carbonconcentration in rice paddy, Proceedingsof the 1st symposium: Korean J EnvironAgric. 1, 222-223.)
  5. 정원교, 김선관. 2007. 우리나라 논토양의 토양 유기탄소 변동 특성, 한국토양비료학회지 40(1), 36-42. (Jung WK, Kim SK. 2007. Soil organic carbon dynamics in Korean paddy soils, Korean J. Soil Sci. Fert. 40(1), 36-42.)
  6. 정원교, 김선관, 연병열, 노재승. 2007. 동일 비료장기연용 논에서 토양유기탄소의 변동, 한국토양비료학회지, 40(4), 292-297. (Jung WK, Kim SK, Yeon BY, Noh JS. 2007. Long-term impact of single rice cropping system on SOC dynamics, Korean J. Soil Sci. Fert. 40(4), 292-297.)
  7. Agbenin JO, Goladi JT. 1997. Carbon, nitrogen and phosphorus dynamics under continuous cultivation as influenced by farmyard manure and inorganic fertilizers in the savanna of northern Nigeria, Agriculture, Ecosystems and Environment 63, 17-24. https://doi.org/10.1016/S0167-8809(96)01123-1
  8. Al-Kaisi MM, Yin X. 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation, J. Environ. Qual. 34, 437-445. https://doi.org/10.2134/jeq2005.0437
  9. Beare MH, Cabrera ML, Hendrix PF, Coleman DC. 1994. Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils, Soil Sci. Soc. Am. J. 58, 787-795. https://doi.org/10.2136/sssaj1994.03615995005800030021x
  10. Bruce JP, Frome M, Haites E, Janzen H, Lal R, Paustian K. 1999. Carbon sequestration in soils, Journal of Soil and Water Conservation 54, 382-389.
  11. Cai Z, Sawamoto T, Li C, Kang G, Boonjawat J, Mosier A, Wassmann R, Tsuruta H. 2003. Field validation of the DNDC model for greenhouse gas emission in East Asian cropping systems, Global Biogeochem. Cycles 17(4), 1-10. https://doi.org/10.1029/2002GB001969
  12. Chang HL, Jung KY, Kang SS, Kim MS, Kim YH, Kim PJ. 2013. Effect of long term fertilization on soil carbon and nitrogen pools in paddy soil, Korean J. Soil Sci. Fert. 46(3), 216-222. https://doi.org/10.7745/KJSSF.2013.46.3.216
  13. Curtin D, Wang H, Selles F, McConkey BG, Campbell CA. 2000. Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations, Soil Science Society of America Journal 64, 2080-2086. https://doi.org/10.2136/sssaj2000.6462080x
  14. Freibauer A, Rounsevellb MDA, Smith P, Verhagen J. 2004. Carbon sequestration in the agricultural soils of Europe, Geoderma 122, 1-23. https://doi.org/10.1016/j.geoderma.2004.01.021
  15. Govi M, Francioso O, Ciavatta C, Sequi P. 1992. Influence of long-term residue and fertilizer applications on soil humic substances: A case study by electro focusing, Soil Science 154, 8-13. https://doi.org/10.1097/00010694-199207000-00002
  16. Halvorson AD, Wienhold BJ, Black AL. 2002. Tillage, nitrogen and cropping system effects on soil carbon sequestration, Soil Sci. Soc. Am. J. 66, 906-912. https://doi.org/10.2136/sssaj2002.9060
  17. Haynes RJ, Naidu R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review, Nutr. Cycl. Agroecosyst. 51, 123-137. https://doi.org/10.1023/A:1009738307837
  18. Holeplass H, Singh BR, Lal R. 2004. Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an Inceptisol in southeastern Norway, Nutr. Cycl. Agroecosyst. 70, 167-177. https://doi.org/10.1023/B:FRES.0000048483.94397.b6
  19. Jackson LE, Calderon FJ, Steenwerth KL, Scow KM, Rolston DE. 2003. Responses of soil microbial processes and community structure to tillage events and implications for soil quality, Geoderma, 114, 305-317. https://doi.org/10.1016/S0016-7061(03)00046-6
  20. Jastrow JD, Boulton TW, Miller RM. 1996. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance, Soil Sci. Soc. Am. J. 60, 801-807. https://doi.org/10.2136/sssaj1996.03615995006000030017x
  21. Kapkiyai JJ, Karanja NK, Qureshi JN, Smithson PC, Womer PL. 1999. Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management, Soil Biology and Biochemistry 31(13), 1773-1782. https://doi.org/10.1016/S0038-0717(99)00088-7
  22. Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE. 1997. Soil quality: A concept, definition, and framework for evaluation, Soil Sci. Soc. Am. J. 61, 4-10. https://doi.org/10.2136/sssaj1997.03615995006100010001x
  23. Kingery WL, Wood CW, Delaney DP, Williams JC, Mullins GL. 1994. Impact of longterm land application of broiler litter on environmentally related soil properties, J. Environ. Qual. 23, 139-147.
  24. Lal R, Kimble JM. 1997. Conservation tillage for carbon sequestration, Nutr. Cycling Agroecosyst. 49, 243-253. https://doi.org/10.1023/A:1009794514742
  25. Morari F, Lugato E, Berti A, Giardini L. 2006. Long-term effects of recommended management practices on soil carbon changes and sequestration in northeastern Italy, Soil Use and Management 22, 71-81. https://doi.org/10.1111/j.1475-2743.2005.00006.x
  26. Nash JE, Sutcliffe JV. 1970. River Flow Forecasting Through Conceptual Models: 1. A Discussion of Principles, Journal of Hydrology 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  27. Ogle SM, Breidt FJ, Paustian K. 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions, Biogeochemistry 72, 87-121. https://doi.org/10.1007/s10533-004-0360-2
  28. Pathak H, Li CS, Wassmann R. 2005. Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model, Biogeosciences 2, 113-123. https://doi.org/10.5194/bg-2-113-2005
  29. Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Van Noorwijk M, Woomer PL. 1997. Agricultural soils as a sink to mitigate $CO_2$ emissions, Soil Use and Management 13, 230-244. https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
  30. Raun WR, Johnson GV, Phillips SB, Westerman RL. 1998. Effect of long-term N fertilization on soil organic C and total N in continuous wheat under conventional tillage in Oklahoma, Soil Tillage Res 47, 323-330. https://doi.org/10.1016/S0167-1987(98)00120-2
  31. Roberts WP, Chan KY. 1990. Tillage-induced increases in carbon dioxide loss from soil, Soil Tillage Res. 17, 143-151. https://doi.org/10.1016/0167-1987(90)90012-3
  32. Rudrappa L, Purakayastha TJ, Dhyan S, Bhadrarary S. 2005. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India, Soil Tillage Res 88, 180-192.
  33. Russell AE, Laid DA, Parkin TB, Mallarino AP. 2005. Impact of nitrogen fertilization and cropping system on carbon sequestration in Midwestern Mollisols, Soil Sci Soc Am J 69, 413-422. https://doi.org/10.2136/sssaj2005.0413
  34. Smith WN, Grant B, Desjardins RL, Lemke R, Li C. 2004. Estimates of the inter annual variations of $N_2O$ emissions from agricultural soils in Canada, Nutrient Cycling in Agroecosystems 68(1), 37-45. https://doi.org/10.1023/B:FRES.0000012230.40684.c2
  35. Wang L, Qiu J, Tang H, Li H, Li C, Van Ranst E. 2001. Modelling soil organic carbon dynamics in the major agricultural regions of China, Geoderma 147, 47-55.
  36. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ(Eds.). 2000. Land use, land use change, and forestry. Cambridge Univ. Press, Cambridge, UK.
  37. Xu R, Wang M, Wang Y. 2003. Using a modified DNDC model to estimate $N_2O$ fluxes from semi-arid grassland in China, Soil Biology and Biochemistry 35, 615-620. https://doi.org/10.1016/S0038-0717(03)00009-9
  38. Young LM. 2003. Carbon sequestration in agriculture: the U.S. policy in context, Am. J. Agric. Econ. 85, 1164-1170. https://doi.org/10.1111/j.0092-5853.2003.00524.x