References
- T. M. Apostol, Modular functions and Dirichlet series in Number Theory, Berlin, Heidelberg and New York, Springer-Verlag, 1976.
- A. A. Aygunes, A formula for generating modular forms with weight 4, to appear.
- A. A. Aygunes and Y. Simsek, Hecke Operators Related to the Generalized Dedekind Eta Functions and Applications, Numer. Anal. Appl. Math. Vol. I-III, Book Series: AIP Conference Proceedings Volume: 1281 (2010), 1098-1101.
- A. A. Aygunes, Y. Simsek, and H.M. Srivastava, A sequence of modular forms associated with higher order derivative Weierstrass-type functions, to appear.
- E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht in Gottingen, 1983.
- A. Hurwitz, Ueber die Differentialgleichungen dritter Ordnung, welchen die Formen mit linearen Transformationen in sich genu gen, Math. Ann. 33 (1889), no. 3, 345-352. https://doi.org/10.1007/BF01443965
- L. J. P. Kilford, Modular Forms: a classical and computational introduction, Imperial College Press, 2008.
- C. H. Kim and J. K. Koo, On the modular function j4 of level 4, J. Korean Math. Soc. 35 (1998), no. 4, 903-931.
- C. H. Kim and J. K. Koo, Arithmetic of the modular function j4, J. Korean Math. Soc. 36 (1999), no. 4, 707-723.
- F. Klein, Ueber Multiplicatorgleichungen, Math. Ann. 15 (1879), no. 1, 86-88. https://doi.org/10.1007/BF01444105
- N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York, 1993.
- S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), no. 9, 159-184.
- A. Sebbar and A. Sebbar, Eisenstein series and modular differential equations, Canad. Math. Bull. 55 (2012), no. 2, 400-409. https://doi.org/10.4153/CMB-2011-091-3
- J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, New York, Heidelberg and Berlin, Springer-Verlag, 1994.
-
Y. Simsek, Relations between theta-functions Hardy sums Eisenstein series and Lambert series in the transformation formula of log
$η_g,_h_(g,h)$ (z), J. Number Theory 99 (2003), no. 2, 338-360. https://doi.org/10.1016/S0022-314X(02)00072-0 - Y. Simsek, On normalized Eisenstein series and new theta functions, Proc. Jangjeon Math. Soc. 8 (2005), no. 1, 25-34.
- B. Van der Pol, On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 54, Indagationes Math. 13 (1951), 261-271, 272-284.