참고문헌
- Bo, L., Yifu, S., Weiye, H. and Lei, L. (2014), "Surface modification of Ti-6Al-4V alloy via friction-stir processing: microstructure evolution and dry sliding wear performance", Surf. Coat. Technol., 239, 160-170. https://doi.org/10.1016/j.surfcoat.2013.11.035
- Capitanu, L., Onisoru, J., Iarovici, A. and Tiganesteanu, C. (2008), "Scratching mechanisms of hip artificial joints", Tribol. Industry, 30(1-2), 23-32.
- Cho, T., Lee, H., Ahn, B., Kawasaki, M. and Langdon, T.G. (2014), "Microstructural evolution and mechanical properties in a Zn-Al eutectoid alloy processed by high-pressure torsion", Acta Materialia, 72, 67-79. https://doi.org/10.1016/j.actamat.2014.03.026
- Cojocaru, V., Raducanu, D., Gordin, D.M. and Cinca, I. (2013), "Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy", J. Alloy. Compounds, 546(5), 260-269. https://doi.org/10.1016/j.jallcom.2012.08.103
- Dai, Z.D., Pan, S.C., Wang, M., Yang, S.R., Zhang, X.S. and Xue, Q.J. (1997), "Improving the fretting wear resistance of titanium alloy by laser beam quenching", Wear, 213(1-2), 135-139. https://doi.org/10.1016/S0043-1648(97)00160-9
- Diomidis, N., Mischler, S., More, N.S. and Roy, M. (2012), "Tribo- electrochemical characterization of metallic biomaterials for total joint replacement", Acta Biomaterialia, 8(2), 852-859. https://doi.org/10.1016/j.actbio.2011.09.034
- Edalati, K., Matsubara, E. and Horita, Z. (2009), "Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain", Metallurgic. Mater. Trans. A, 40(9), 2079-2086. https://doi.org/10.1007/s11661-009-9890-5
- Eliasa, C.N, Meyers, M.A, Valiev, R.Z. and Monteiro, S.N. (2013), "Ultrafine grained titanium for biomedical applications: An overview of performance", J. Mater. Res. Technol., 2(4), 340-350. https://doi.org/10.1016/j.jmrt.2013.07.003
- Faghihi, S., Li, D. and Szpunar, J.A. (2010), "Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion", Nanotechnol., 21(48), 485703. https://doi.org/10.1088/0957-4484/21/48/485703
- Figueiredo, R.B. and Langdom, T.G. (2012), "Fabricating ultrafine-grained materials through the application of severe plastic deformation: A review of developments in Brazil", J. Mater. Res. Technol., 1(1), 55-62. https://doi.org/10.1016/S2238-7854(12)70010-8
- Fu, Jie, Ding Hua, Huang, Yi, Zhang, Wenjing and Langdon T.G. (2015), "Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion", J. Mater. Res. Technol., 4(1), 2-7. https://doi.org/10.1016/j.jmrt.2014.10.006
- Horita, Z., Furukawa, M., Nemoto, N., Barnes, A.J. and Langdon, T.G. (2000), "Superplastic forming at high strain rates after sever plastic deformation", Acta Mater., 48(14), 3633-3640. https://doi.org/10.1016/S1359-6454(00)00182-8
- Islamgaliev, R.K., Kazyhanov, V.U., Shestakova, L.O., Sharafutdinov, A.V. and Valiev, R.Z. (2008), "Microstructure and mechanical proper- ties of titanium (Grade 4) processed by high-pressure torsion", Mater. Sci. Eng. A., 493(1), 190-194. https://doi.org/10.1016/j.msea.2007.08.084
- Jain, A., Basu, B., Manoj Kumar, B.V. and Harshavardhan, Sarkar, J. (2010) "Grain size-wear rate relationship for titanium in liquid nitrogen environment", Acta Mater., 58(7), 2313-2323. https://doi.org/10.1016/j.actamat.2009.12.017
- Janecek, M., Strasky, J., Cizek, J., Harcuba, P., Vaclavova, K., Polyakova, V. and Semenova, P. (2013), "Mechanical properties and dislocation structure evolution in Ti6Al7Nb alloy processed by high pressure torsion", Metallurgic. Mater. Trans. A, 45(1), 7-15.
- Kent, D., Wang, G., Yu, Z., Ma, X. and Dargusch, M. (2011), "Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique", J. Mech. Behav. Biomed. Mater., 4(3), 405-416. https://doi.org/10.1016/j.jmbbm.2010.11.013
- Kim, H.Y., Sasaki, T., Okutsu, K., Kim, J.I., Inamura, T., Hosoda, H. and Miyazaki, S. (2006), "Texture and shape memory behavior of Ti-22Nb-6Ta alloy", Acta Mater., 54(2), 423-433. https://doi.org/10.1016/j.actamat.2005.09.014
- Lin, Z., Wang, L., Xue, X., Lu, W., Qin, J. and Zhang, D. (2013), "Microstructure evolution and mechanical properties of a Ti-35Nb- 3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)", Mater. Sci. Eng. C, 33(8), 4551-4561. https://doi.org/10.1016/j.msec.2013.07.010
- Meredith, C.S. and Khan, A.S. (2012), "Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing", Int. J. Plast., 30-31, 202-217. https://doi.org/10.1016/j.ijplas.2011.10.006
- Mohsin, T.M., Zahid A.K. and Arshad N.S. (2013), "Influence of microstructural features on wear resistance of biomedical titanium materials", Int. J. Chem., Nuclear, Metallurgic. Mater. Eng., 7(1), 52-56.
- Mohsin, T.M., Zahid, A.K. and Arshad N.S. (2014), "Beta Titanium Alloys: The lowest elastic modulus for biomedical applications: A review", Int. J. Chem., Nuclear, Metallurgic. Mater. Eng., 8(8), 726-731.
- Niinomi, M. (1998), "Mechanical properties of biomedical titanium alloys", Mater. Sci. Eng. A, 243(1-2), 231-236. https://doi.org/10.1016/S0921-5093(97)00806-X
- Ozaltin, K., Chrominski, W., Kulczyk, M., Panigrahi, A., Horky, J., Zehetbauer, M. and Lewandowska, M. (2014), "Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusion", J. Mater. Sci., 49(20), 6930-6936. https://doi.org/10.1007/s10853-014-8397-7
- Purcek, G., Yapici, G.G., Karaman, I. and Maier, H.J. (2011), "Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium", Mater. Sci. Eng., 528(6), 2303-2308. https://doi.org/10.1016/j.msea.2010.11.021
- Raducanu, D., Vasilescu, E., Cojocaru, V.D., Cinca, I., Drob, P., Vasilescu, C. and Drob, S.I. (2011), "Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy", J. Mech. Behav. Biomed. Mater., 4(7), 1421-1430. https://doi.org/10.1016/j.jmbbm.2011.05.012
- Sabirov, I., Perez-Prado, M.T., Molina-Aldareguia, J.M., Semenova, I.P., Salimgareeva, G.K. and Valiev, R.Z. (2011), "Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route", Scripta Materialia, 64(1), 69-72. https://doi.org/10.1016/j.scriptamat.2010.09.006
- Sabirov, I., Valiev, R.Z., Semenova, I.P. and Pippan, R. (2010), "Effect of equal channel angular pressing on the fracture behavior of commercially pure titanium", Metallurgic. Mater. Trans. A, 41(3), 727-733. https://doi.org/10.1007/s11661-009-0111-z
- Sergueeva, A.V., Stolyarov, V.V., Valiev, R.Z. and Mukherjee, A.K. (2001), "Advanced mechanical properties of pure titanium with ultrafine grained structure", Scripta Materialia, 45(7), 747-752. https://doi.org/10.1016/S1359-6462(01)01089-2
- Shahmir H., Nili-Ahmadabadi M., Huang Y. and Langdon T.G. (2014), "Evolution of microstructure and hardness in NiTi shape memory alloys processed by high-pressure torsion", J. Mater. Sci., 49, 2998-3009. https://doi.org/10.1007/s10853-013-7985-2
-
Sharman, K., Bazarnik, P., Brynk, T., Bulutsuz, A.G., Lewandowska, M., Huang, Y. and Langdon, T.G. (2015), "Enhancement in mechanical properties of a
$\beta$ -titanium alloy by high-pressure torsion", J. Mater. Res. Technol., 4(1), 79-83. https://doi.org/10.1016/j.jmrt.2014.10.010 - Stolyarov, V.V., Shuster, L.S., Migranov, M.S., Valiev, R.Z. and Zhu, Y.T. (2004), "Reduction of friction coefficient of ultrafine-grained CP titanium", Mater. Sci. Eng. A, 371(1), 313-317. https://doi.org/10.1016/j.msea.2003.12.026
- Stolyarov, V.V. (2011), "Mechanical and functional properties of titanium alloys processed by severe plastic deformation", Materials Science Forum.
-
Svetlana, G., Irina, S., Milos, J. and Josef, S. (2014), "Effect of high pressure torsion on the aging kinetics of
$\beta$ -titanium Ti-15Mo alloy", 6th International Conference on Nanomaterials by Sever Plastic Deformation, Materials Science and Engineering, Metz. - Topolski, K., Garbacz, H., Wiecinski, P., Pachla, W. and Kurzydlowski, K.J. (2012), "Mechanical properties of titanium processed by hydrostatic extrusion", Archiv. Metallurgy Mater., 57(3), 863-867. https://doi.org/10.2478/v10172-012-0095-3
- Tsuji, N., Ito, Y., Saito, Y. and Minamino, Y. (2002), "Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing", Scripta Mater., 47(12), 893-899. https://doi.org/10.1016/S1359-6462(02)00282-8
- Valiev, R. (2004), "Nanostructuring of metals by SPD for advanced properties", Nat. Mater., 3, 511-516. https://doi.org/10.1038/nmat1180
- Valiev, R.Z. and Alexandrov, I.V. (2002), "Paradox of strength and ductility in metals processed by severe plastic deformation", J. Mater. Res., 17(1), 5-8. https://doi.org/10.1557/JMR.2002.0002
- Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V. (2000), "Bulk nanostructured materials from severe plastic deformation", Prog. Mater. Sci., 45(2), 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9
- Valiev, R.Z., Ivanisenko, V., Rauch, E.F. and Baudelet, B. (1996), "Structure and deformation behaviour of Armco iron subjected to severe plastic deformation", Acta Materialia, 44(12), 4705-4712. https://doi.org/10.1016/S1359-6454(96)00156-5
- Valiev, R.Z., Semenova, I.P., Jakushina, E., Latysh, V.V., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Hrusak, D. and Sochova, J. (2008), "Nanostructured SPD processed titanium for medical implants", Mater. Sci. Forum, 584-586, 49-54.
- Valiev R.Z., Sergueeva A.V. and Mukheijee A.K. (2003), "The effect of annealing on tensile deformation behavior of nanostructured SPD titanium", Scripta Mater., 49(7), 669-674. https://doi.org/10.1016/S1359-6462(03)00395-6
- Valiev, R.Z., Zehetbauer, M.J., Estrin, Y., Hoppel, H.W., Ivanisenko, Y., Hahn, H., Wilde, G., Roven, H.J., Sauvage, X. and Langdon, T.G. (2007), "The innovation potential of bulk nanostructured materials", Adv. Eng. Mater., 9(7), 527-533. https://doi.org/10.1002/adem.200700078
- Valiev, R.Z., Zhilyaev, A.P. and Langdon, T.G. (2014), Bulk Nanostructured Materials: Fundamentals and Applications, Wiley & Sons, New Jersey, USA.
-
Wadood, A., Inamura, T., Yamabe-Mitarai, Y. and Hosoda, H. (2013), "Strengtheningof b Ti-6Cr-3Sn alloy through
$\beta$ grain refinement, a phase precipitation and resulting effects on shape memory properties", Mater. Sci. Eng. A, 559, 829-835. https://doi.org/10.1016/j.msea.2012.09.030 - Wang, C.T., Escudeiro, A., Polcar, T., Cavaleiro, A., Wood, R.J, Gao, N. and Langdon, T.G. (2013b), "Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion", Wear, 306(1), 304-310. https://doi.org/10.1016/j.wear.2012.12.033
- Wang, C.T., Gao, N., Gee, M.G., Wood, R.J. and Langdon, T.G. (2012), "Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion", Wear, 280-281, 28-35. https://doi.org/10.1016/j.wear.2012.01.012
- Wang, C.T., Gao, N., Gee, M.G., Wood, R.J. and Langdon, T.G. (2013a), "Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating", J. Mech. Behav. Biomed. Mater., 17, 166-175. https://doi.org/10.1016/j.jmbbm.2012.08.018
- Wang, Y.C. and Langdon, T.G. (2013c), "Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion", Mater. Sci. Eng. A, 559, 861-867. https://doi.org/10.1016/j.msea.2012.09.034
- Xu, C., Horita, Z. and Langdon, T.G. (2008), "The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion", Acta Materialia, 56(18), 5168-5176. https://doi.org/10.1016/j.actamat.2008.06.036
-
Xu, W., Edwards, D.P., Wu, X., Stoica, M., Calin, M., Kuhn, U. and Xia, K. (2013), "Promoting nano/ultrafine-duplex structure via accelerated
$\alpha$ precipitation in a$\beta$ -type titanium alloy severely deformed by high-pressure torsion", Scripta Materialia, 68(1), 67-70. https://doi.org/10.1016/j.scriptamat.2012.09.023 - Yang, X., Okabe, Y., Miura, H. and Sakai, T. (2012), "Effect of pass strain and temperature on recrystallisation in magnesium alloy AZ31 after interrupted cold deformation", J. Mater. Sci., 47(6), 2823-2830. https://doi.org/10.1007/s10853-011-6111-6
- Yildiz, F., Yetim, A.F., Alsaran, A. and Efeoglu, I. (2009), "Wear and corrosion behaviour of various surface treated medical grade titanium alloy in biosimulated environment", Wear, 267(5), 695-701. https://doi.org/10.1016/j.wear.2009.01.056
-
Yilmazer, H., Niinomi, M., Cho, K., Nakai, M., Hieda, J., Sato, S. and Todaka, Y. (2014), "Nanostructure of
$\beta$ -type titanium alloys through severe plastic deformation", Adv. Mat. Lett., 5(7), 378-383. https://doi.org/10.5185/amlett.2014.amwc.1120 -
Yilmazer, H., Niinomi, M., Nakai, M., Cho, K., Hieda, J., Todaka, Y. and Miyazaki,T. (2013), "Mechanical properties of a medical
$\beta$ -type titanium alloy with specific microstructural evolution through high-pressure torsion", Mater. Sci. Eng. C, 33(5), 2499-2507. https://doi.org/10.1016/j.msec.2013.01.056 -
Yilmazer, H., Niinomi, M., Nakai, M., Hieda, J., Todaka, Y., Akahori, T. and Miyazaki, T.J. (2012), "Heterogeneous structure and mechanical hardness of biomedical
$\beta$ -type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion", Mech. Behav. Biomed. Mater., 10, 235-245. https://doi.org/10.1016/j.jmbbm.2012.02.022 - Zhang, Y., Figueiredo, R.B., Alhajeri, S.N., Wang, J.T., Gao, N. and Langdon, T.G. (2011), "Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature", Mater. Sci. Eng. A, 528(25), 7708-7714. https://doi.org/10.1016/j.msea.2011.06.054
- Zhao, X., Fu, W., Yang, X. and Langdon, T.G., (2008), "Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature", Scripta Materialia, 59(5), 542-545. https://doi.org/10.1016/j.scriptamat.2008.05.001
- Zhilyaev, A.P. and Langdon, T.G. (2008), "Using high-pressure torsion for metal processing: fundamentals and applications", Prog. Mater. Sci., 53(6), 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002