DOI QR코드

DOI QR Code

Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks

  • Spear, Rose L. (Department of Engineering, University of Cambridge) ;
  • Symeonidou, Antonia (Department of Engineering, University of Cambridge) ;
  • Skepper, Jeremy N. (Department of Physiology, University of Cambridge) ;
  • Brooks, Roger A. (Division of Trauma & Orthopaedic Surgery, Addenbrooke's Hospital) ;
  • Markaki, Athina E. (Department of Engineering, University of Cambridge)
  • 투고 : 2015.06.18
  • 심사 : 2015.09.14
  • 발행 : 2015.09.25

초록

Successful integration of cementless femoral stems using porous surfaces relies on effective periimplant bone healing to secure the bone-implant interface. The initial stages of the healing process involve protein adsorption, fibrin clot formation and cell osteoconduction onto the implant surface. Modelling this process in vitro, the current work considered the effect of fibrin deposition on the responses of human mesenchymal stromal cells cultured on ferritic fibre networks intended for magneto-mechanical actuation of in-growing bone tissue. The underlying hypothesis for the study was that fibrin deposition would support early stromal cell attachment and physiological functions within the optimal regions for strain transmission to the cells in the fibre networks. Highly porous fibre networks composed of 444 ferritic stainless steel were selected due to their ability to support human osteoblasts and mesenchymal stromal cells without inducing untoward inflammatory responses in vitro. Cell attachment, proliferation, metabolic activity, differentiation and penetration into the ferritic fibre networks were examined for one week. For all fibrin-containing samples, cells were observed on and between the metal fibres, supported by the deposited fibrin, while cells on fibrin-free fibre networks (control surface) attached only onto fibre surfaces and junctions. Initial cell attachment, measured by analysis of deoxyribonucleic acid, increased significantly with increasing fibrinogen concentration within the physiological range. Despite higher cell numbers on fibrin-containing samples, similar metabolic activities to control surfaces were observed, which significantly increased for all samples over the duration of the study. It is concluded that fibrin deposition can support the early attachment of viable mesenchymal stromal cells within the inter-fibre spaces of fibre networks intended for magneto-mechanical strain transduction to in-growing cells.

키워드

과제정보

연구 과제 주관 기관 : European Research Council, National Institute for Health Research (NIHR)

참고문헌

  1. Arneson, D. (1976), "Quantitative-analysis of plasma fibrin monomer", Thrombosis Res., 8(1), 31-41. https://doi.org/10.1016/0049-3848(76)90120-1
  2. Barsotti, M.C., Magera, A., Armani, C., Chiellini, F., Felice, F., Dinucci, D., Piras, A.M., Minnocci, A., Solaro, R., Soldani, G., Balbarini, A. and Di Stefano, R. (2011), "Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells", Cell Proliferation, 44(1), 33-48. https://doi.org/10.1111/j.1365-2184.2010.00715.x
  3. Bianco, P., Cao, X., Frenette, P.S., Mao, J.J., Robey, P.G., Simmons, P.J. and Wang, C.Y. (2013), "The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine", Nat. Med., 19(1), 35-42. https://doi.org/10.1038/nm.3028
  4. Caplan, A.I. (1991), "Mesenchymal stem cells", J. Orthop. Res., 9(5), 641-650. https://doi.org/10.1002/jor.1100090504
  5. Clause, K.C., Liu, L.J. and Tobita, K. (2010), "Directed stem cell differentiation: the role of physical forces", Cell Commun. Adhesion, 17(2), 48-54. https://doi.org/10.3109/15419061.2010.492535
  6. Colley, H., McArthur, S.L., Stolzing, A. and Scutt, A. (2012), "Culture on fibrin matrices maintains the colony-forming capacity and osteoblastic differentiation of mesenchymal stem cells", Biomed. Mater., 7(4), 045015. https://doi.org/10.1088/1748-6041/7/4/045015
  7. Cox, S., Cole, M. and Tawil, B. (2004), "Behavior of human dermal fibroblasts in three-dimensional fibrin clots: Dependence on fibrinogen and thrombin concentration", Tissue Eng., 10(5-6), 942-954. https://doi.org/10.1089/1076327041348392
  8. Currie, L.J., Sharpe, J.R. and Martin, R. (2001), "The use of fibrin glue in skin grafts and tissue-engineered skin replacements: A review", Plastic Reconstruct. Surg., 108(6), 1713-1726. https://doi.org/10.1097/00006534-200111000-00045
  9. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J. and Horwitz, E.M. (2006), "Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement", Cytother., 8(4), 315-317. https://doi.org/10.1080/14653240600855905
  10. Doolittle, R.F. (1984), "Fibrinogen and fibrin", Ann. Rev. Biochem., 53(1), 195-229. https://doi.org/10.1146/annurev.bi.53.070184.001211
  11. Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006), "Matrix elasticity directs stem cell lineage specification", Cell, 126(4), 677-689. https://doi.org/10.1016/j.cell.2006.06.044
  12. Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., Staudenmaier, R., Goepferich, A. and Blunk, T. (2007), "Long-term stable fibrin gels for cartilage engineering", Biomater., 28(1), 55-65. https://doi.org/10.1016/j.biomaterials.2006.08.027
  13. Giddings, J.C. and Bloom, A.L. (1971), "Study of 2 methods for estimating plasma fibrinogen and effect of epsilon aminocaproic acid and protamine", J. Clin. Pathol., 24(5), 467-471. https://doi.org/10.1136/jcp.24.5.467
  14. Gorodetsky, R., Clark, R.A.F., An, J.Q., Gailit, J., Levdansky, L., Vexler, A., Berman, E. and Marx, G. (1999), "Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing", J. Invest. Dermatol., 112(6), 866-872. https://doi.org/10.1046/j.1523-1747.1999.00600.x
  15. Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W. and Chen, C.S. (2009), "Control of stem cell fate by physical interactions with the extracellular matrix", Cell Stem Cell, 5(1), 17-26. https://doi.org/10.1016/j.stem.2009.06.016
  16. Ho, W., Tawil, B., Dunn, J.C.Y. and Wu, B.M. (2006), "The behavior of human mesenchymal stem cells in 3D fibrin clots: Dependence on fibrinogen concentration and clot structure", Tissue Eng., 12(6), 1587-1595. https://doi.org/10.1089/ten.2006.12.1587
  17. Jackson, M.R. (2001), "Fibrin sealants in surgical practice: An overview", Am. J. Surg., 182(2), S1-S7. https://doi.org/10.1016/S0002-9610(01)00770-X
  18. Kratz, A., Ferraro, M., Sluss, P.M. and Lewandrowski, K.B. (2004), "Laboratory reference value", New England J. Med., 351(15), 1548-1563. https://doi.org/10.1056/NEJMcpc049016
  19. Kuzyk, P.R.T. and Schemitsch, E.H. (2011), "The basic science of peri-implant bone healing", Indian J. Orthop., 45(2), 108-115. https://doi.org/10.4103/0019-5413.77129
  20. Lalu, M.M., McIntyre, L., Pugliese, C., Fergusson, D., Winston, B.W., Marshall, J.C., Granton, J., Stewart, D.J. and Canadian Critical Care Trials, G. (2012), "Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials", PLoS ONE, 7(10), e47559. https://doi.org/10.1371/journal.pone.0047559
  21. Lancaster, M.V. and Fields, R.D. (1996), Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents, Alamar Biosciences Laboratory, Inc.: 2313.
  22. Lei, P., Padmashali, R.M. and Andreadis, S.T. (2009), "Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels", Biomater., 30(22), 3790-3799. https://doi.org/10.1016/j.biomaterials.2009.03.049
  23. Malheiro, V.N., Skepper, J.N., Brooks, R.A. and Markaki, A.E. (2013), "In vitro osteoblast response to ferritic stainless steel fiber networks for magneto-active layers on implants", J. Biomed. Mater. Res. Part A, 101A(6), 1588-1598. https://doi.org/10.1002/jbm.a.34473
  24. Malheiro, V.N., Spear, R.L., Brooks, R.A. and Markaki, A.E. (2011), "Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a Magneto-Mechanically Actuated Fibrous Scaffold", Biomater., 32(29), 6883-6892. https://doi.org/10.1016/j.biomaterials.2011.06.002
  25. Markaki, A.E. and Clyne, T.W. (2004), "Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres", Biomater., 25(19), 4805-4815. https://doi.org/10.1016/j.biomaterials.2003.11.041
  26. Markaki, A.E. and Clyne, T.W. (2005), "Magneto-mechanical actuation of bonded ferromagnetic fibre arrays", Acta Materialia, 53(3), 877-889. https://doi.org/10.1016/j.actamat.2004.10.037
  27. Markaki, A.E. and Justin, A.W. (2014), "A magneto-active scaffold for stimulation of bone growth", Mater. Sci. Technol., 30(13A), 1590-1597. https://doi.org/10.1179/1743284714Y.0000000579
  28. Mosesson, M.W. (2005), "Fibrinogen and fibrin structure and functions", J. Thrombos. Haemostas., 3(8), 1894-1904. https://doi.org/10.1111/j.1538-7836.2005.01365.x
  29. Mosesson, M.W., Siebenlist, K.R. and Meh, D.A. (2001), "The structure and biological features of fibrinogen and fibrin", Ann. NY. Academy Sci., 936(1), 11-30.
  30. Neelakantan, S., Bosbach, W., Woodhouse, J. and Markaki, A.E. (2014), "Characterization and deformation response of orthotropic fibre networks with auxetic out-of-plane behaviour", Acta Materialia, 66, 326-339. https://doi.org/10.1016/j.actamat.2013.11.020
  31. Nilsson, K.G., Henricson, A., Norgren, B. and Dalen, T. (2006), "Uncemented HA-coated implant is the optimum fixation for TKA in the young patient", Clinic. Orthop. Relat. Res., 448, 129-139. https://doi.org/10.1097/01.blo.0000224003.33260.74
  32. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999), "Multilineage potential of adult human mesenchymal stem cells", Sci., 284(5411), 143-147. https://doi.org/10.1126/science.284.5411.143
  33. Silverman, R.P., Passaretti, D., Huang, W., Randolph, M.A. and Yaremchuk, M. (1999), "Injectable tissue-engineered cartilage using a fibrin glue polymer", Plastic Reconstruct. Surg., 103(7), 1809-1818. https://doi.org/10.1097/00006534-199906000-00001
  34. Spear, R.L., Symeonidou, A., Brooks, R.A. and Markaki, A.E. (2015), "In vitro assessment of porous magneto-active coatings for implant osseointegration", Reference Module in Materials Science and Materials Engineering, S. Hashmi, Elsevier, in press.
  35. Spear, R.L., Brooks, R.A. and Markaki, A.E. (2013), "Short-term in vitro responses of human peripheral blood monocytes to ferritic stainless steel fiber networks", J. Biomed. Mater. Res. Part A, 101(5), 1456-1463. https://doi.org/10.1002/jbm.b.32965
  36. Spear, R.L., Srigengan, B., Neelakantan, S., Bosbach, W., Brooks, R.A. and Markaki, A.E. (2015), "Physical and biological characterization of ferromagnetic fiber networks: effect of fibrin deposition on short-term in vitro responses of human osteoblasts", Tissue Eng. Part A, 21(3-4), 463-474. https://doi.org/10.1089/ten.tea.2014.0211
  37. Symeonidou, A., Spear, R.L., Brooks, R.A. and Markaki, A.E. (2013), "Human mesenchymal stem cell response to 444 ferritic stainless steel networks", MRS Online Proceedings Library, 1569, 73-78.
  38. Vavken, P., Joshi, S.M. and Murray, M.M. (2011), "Fibrin concentration affects ACL fibroblast proliferation and collagen synthesis", Knee, 18(1), 42-46. https://doi.org/10.1016/j.knee.2009.12.008
  39. Wong, C., Inman, E., Spaethe, R. and Helgerson, S. (2003), "Fibrin-based biomaterials to deliver human growth factors", Thrombos. Haemostas., 89(3), 573-582. https://doi.org/10.1055/s-0037-1613389
  40. Yamada, Y., Boo, J.S., Ozawa, R., Nagsaka, T., Okazaki, Y., Hata, K. and Ueda, M. (2003), "Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold", J. Cranio-Maxillofacial Surg., 31(1), 27-33. https://doi.org/10.1016/S1010-5182(02)00143-9
  41. Zaher, W., Harkness, L., Jafari, A. and Kassem, M. (2014), "An update of human mesenchymal stem cell biology and their clinical uses", Archive Toxicol., 88(5), 1069-1082. https://doi.org/10.1007/s00204-014-1232-8