DOI QR코드

DOI QR Code

Effects of Driving Frequency on Propagation Characteristics of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave

정상초음파의 교란을 받는 메탄-공기 예혼합화염의 전파특성에 대한 초음파 구동 주파수의 영향

  • Received : 2014.07.02
  • Accepted : 2014.11.04
  • Published : 2015.02.01

Abstract

An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

정상초음파장의 구동 주파수가 메탄-공기 예혼합화염의 전파특성에 미치는 영향을 규명하고자 하는 실험결과를 제시한다. 고속카메라를 이용하여 화염의 전파영상을 획득하였으며, 영상 후처리를 통해 화염선단의 구조와 속도변이를 포함하는 화염의 거시적 거동을 상세히 관찰하였다. 정상초음파가 연소반응을 촉진시켜 화염 전파속도의 증대와 화염선단 구조의 변이를 유발한다는 사실에 더하여, 초음파구동 주파수와 당량비에 대한 화염거동의 종속성을 확인하였다.

Keywords

References

  1. Pelce, P. and Clavin, P., 1982, "Influence of Hydrodynamics and Diffusion upon the Stability Limits of Laminar Premixed Flames," J. Fluid Mech., Vol. 124, pp. 219-237. https://doi.org/10.1017/S002211208200247X
  2. Kadowaki, S. and Hasegawa, T., 2005, "Numerical Simulation of Dynamics of Premixed Flames: Flame Instability and Vortex-flame Interaction," Proc. Energy Combust. Sci., Vol. 31, Issue 3, pp. 193-241. https://doi.org/10.1016/j.pecs.2005.01.001
  3. Ellis, O. C. and De, C., 1928, "Flame Movement in Gasous Explosive Mixtures (Part 7)," Fuel in Science and Practice 7, pp. 502-508.
  4. Guenoche, H., 1964, Nonsteady Flame Propagation, Markstein, G. H. Ed., Pergamon, New York, pp. 107-176.
  5. Clanet, C. and Searby, G., 1996, "On the 'Tulip Flame' Phenomenon," Combustion and Flame, Vol. 105, Issues 1-2, pp. 225-238. https://doi.org/10.1016/0010-2180(95)00195-6
  6. Matalon, M. and Metzener, P., 1997, "The Propagation of Premixed Flames in Closed Tubes," J. Fluid Mech., Vol. 336, pp. 331-350. https://doi.org/10.1017/S0022112096004843
  7. Kaltayev, A. K., Riedel, U. R. and Warnatz, J., 2000, "The Hydrodynamic Structure of a Methane-Air Tulip Flame," Combust. Sci. Tech., Vol. 158, No. 1, pp. 53-69. https://doi.org/10.1080/00102200008947327
  8. Dunn-Rankin, D. and Sawyer, R. F., 1998, "Tulip Flames: Change in Shape of Premixed Flames Propagating in Closed Tubes," Exp. Fluids, Vol. 24, No. 2, pp. 130-140. https://doi.org/10.1007/s003480050160
  9. Xiao, H., Wang, Q., He, X., Sun, J. and Shen, X., 2011, "Experimental Study on the Behaviors and Shape Changes of Premixed Hydrogen-air Flames Propagating in Horizontal Duct," Int. J. Hydrogen Energy, Vol. 36, Issue 10, pp. 6325-6336. https://doi.org/10.1016/j.ijhydene.2011.02.049
  10. Bychkov, V. V. and Liberman, M. A., 2000, "Dynamics and Stability of Premixed Flames," Physics Reports, Vol. 325, Issues 4-5, pp. 115-238. https://doi.org/10.1016/S0370-1573(99)00081-2
  11. Bychkov, V. V. and Liberman, M. A., 1997, "Stability of a Flame in a Closed Chamber," Physical Review Letters, Vol. 78, No. 7, pp. 1371-1374. https://doi.org/10.1103/PhysRevLett.78.1371
  12. Matalon, M., 2009, "Flame Dynamics," Proc. Combust. Inst., Vol. 32, Issue 2, pp. 57-82. https://doi.org/10.1016/j.proci.2008.08.002
  13. Huzayyin, A. S., Moneib, H. A., Shehatta, M. S. and Attia, A. M. A., 2008, "Laminar Burning Velocity and Explosion Index of LPG-Air and Propane-Air Mixtures," Fuel, Vol. 87, Issue 1, pp. 39-57. https://doi.org/10.1016/j.fuel.2007.04.001
  14. Annaswamy, A. M. and Ghoniem, A. F., 2002, "Active Control of Combustion Instability: Theory and Practice," IEEE Control Syst. Mag., Vol. 22, Issue 6, pp. 37-54. https://doi.org/10.1109/MCS.2002.1077784
  15. Hayashi, A. K., Sato, H., Endo, T., Yasunami, Y., Yoshimi, S., Ogawa, S., Ikame, M., Kishi, T., Hiraoka, K., Harumi, K. and Oka, H., 2003, "Analysis of Unstable Phenomena in Premixed Flame Burners and Their Active Control," Proc. 4th Symp. Smart Control of Turbulence, pp. 173-182.
  16. Seo, H. S., Lee, S. S. and Kim, J. S., 2012, "Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 3, pp. 16-23. https://doi.org/10.6108/KSPE.2012.16.3.016
  17. Kim, J. S., Seo, H. S. and Lee, S. S., 2012, "An Evolution of the Premixed Flame Precipitated by Ultrasonic Standing Wave," AIAA 2012-4032.
  18. Lee, S. S., Seo, H. S. and Kim, J. S., 2012, "Interacting Effects of Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 6, pp. 1-8. https://doi.org/10.6108/KSPE.2012.16.6.001
  19. Seo, H. S., Lee, S. S. and Kim, J. S., 2013, "Effects of the Equivalence Ratio on Propagation Characteristics of $CH_4$-Air Premixed Flame Intervened by an Ultrasonic Standing Wave," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 2, pp. 16-23. https://doi.org/10.6108/KSPE.2013.17.2.016
  20. Seo, H. S., 2013, "An Investigation of the Premixed Flame Propagation Characteristics by the Agitation of Ultrasonic Standing Wave," MS Thesis, Pukyong National University, Busan, Korea.

Cited by

  1. Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (I) vol.19, pp.4, 2015, https://doi.org/10.6108/KSPE.2015.19.4.037