DOI QR코드

DOI QR Code

Synthesis and Ionic Conductivity of Polystyrene Derivative Containing Cyclic Carbonate

Cyclic carbonate를 포함하는 polystyrene 유도체의 합성 및 이온전도 특성

  • Kim, Doo-Hwan (Department of Engineering Chemistry, Chungbuk National University) ;
  • Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
  • Received : 2015.01.14
  • Accepted : 2015.01.28
  • Published : 2015.02.28

Abstract

In this study polystyrene derivative, VBCE, having a cyclic carbonate was synthesized by Williamson reaction and polymerized to poly(VBCE) successfully in an usual polymerization conditions. The obtained polymer was blended with PEGMA and the effect of composition on the ionic conductivity was investigated. Interestingly, the ionic conductivity was decreased from $4.2{\times}10^{-5}S\;cm^{-1}$ to $3.93{\times}10^{-6}S\;cm^{-1}$ with the poly(VBCE) contents of 5.8mol%. From the DSC study, it was found that the $T_g$ of the blend was increased from $-50^{\circ}C$ to $-21^{\circ}C$ by the addition of poly(VBCE). Therefore, it is believed that the presence of a polar cyclic carbonate makes polymer matrix harder and it is necessary to design new structures less hindered the mobility of the matrix.

본 실험에서는 cyclic carbonate를 함유하는 styrene 유도체 VBCE를 Williamson 반응으로 합성하였으며 일반적인 조건에서 고분자중합까지 가능함을 보여주었다. 합성한 poly(VBCE)는 PEGMA와의 블렌드를 통하여 고분자전해질로 제조되었으며 이온전도도에 미치는 조성의 영향을 평가하였다. 흥미롭게도 poly(VBCE)의 함량이 0, 1.9, 5.8 mol%로 증가한 경우, 상온 이온전도도는 각각 $4.2{\times}10^{-5}$, $1.45{\times}10^{-5}$, $3.93{\times}10^{-6}S\;cm^{-1}$로 감소하는 경향을 보여주었다. DSC 측정결과, poly(VBCE)의 도입이 PEGMA의 $T_g$에 크게 영향을 주어 도입전 $-50^{\circ}C$에서 $-40^{\circ}C$, $-21^{\circ}C$로 각각 증가되는 현상을 관찰하였다. 이것은 극성 cyclic carbonate의 존재가 이온전도성 기질인 PEGMA의 유동성을 감소시키기 때문으로 이해할 수 있다. 따라서 cyclic carbonate를 고분자기질에 고정시키기 위해서는 기질의 움직임을 감소시키지 않는 분자설계가 필요할 것이다.

Keywords

References

  1. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed, Wiley-VCH, Weinheim (1988).
  2. J. Li, C. Daniel and D. Wood, "Materials processing for lithium-ion batteries" J. of Power Sources, 196, 2452 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.001
  3. J. Goodenough and Y. Kim, "Challenges for rechargeable Li batteries" Chem. Mater., 22, 587 (2010). https://doi.org/10.1021/cm901452z
  4. G. Rokicki, "Aliphatic cyclic carbonates and spiroorthocarbonates as monomers" Prog. Polym. Sci., 25, 259 (2000). https://doi.org/10.1016/S0079-6700(00)00006-X
  5. G.-A. Nazri and G. Pistoia, 'Lithium Batteries Science and Technology' 574, Kluwer Academic Publishers, New York (2004).
  6. M. Yosho, R. Brodd, and A. Kozawa, 'Lithium-ion Batteries' 413, Springer, New York (2009).
  7. J. MacCallum and C. Vincent, 'Polymer Electrolyte Reviews-1' 69, Elsevier Applied Science, New York (1987).
  8. S. Zhang, L. Yang, and Q. Liu, 'Single-ion conductivity and carrier generation of polyelectrolytes' Solid State Ionics, 76, 121 (1995). https://doi.org/10.1016/0167-2738(94)00224-G
  9. F. Dias, L. Plomp, and J. Veldhuis, 'Trends in polymer electrolytes for secondary lithium batteries' J. Power Sources, 88, 169 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7
  10. A. Nishimoto, M. Watanabe, Y. Ikeda, and S. Kohjiya, 'High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers' Electrochimica Acta, 43, 1177 (1998). https://doi.org/10.1016/S0013-4686(97)10017-2
  11. Y. Ikeda, Y. Wada, Y. Matoba, S. Murakami, and S. Kohjiya, 'Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte' Electrochimica Acta, 45, 1167 (2000). https://doi.org/10.1016/S0013-4686(99)00377-1
  12. P. Jannasch, 'Ion conducting electrolytes based on aggregating comblike poly(propylene oxide)' Polymer, 42, 8629 (2001). https://doi.org/10.1016/S0032-3861(01)00373-1
  13. H. Katz, "Preparation of soluble poly(carbonyldioxyglyceryl methacrylate)" Macromolecules, 20, 2026 (1987). https://doi.org/10.1021/ma00174a057
  14. N. Kihara, T. Endo, "Synthesis and reaction of polymethacrylate bearing cyclic carbonate moieties in the side chain" Makromol. Chem., 193, 1481 (1992). https://doi.org/10.1002/macp.1992.021930624
  15. T. Miyata, K. Matsumoto, T. Endo, S. Yonemori, S. Watanabe, "Synthesis and radical polymerization of styrene-based monomer having a five-membered cyclic carbonate structure" J. Polym. Sci. A: Polym. Chem., 50, 3046 (2012). https://doi.org/10.1002/pola.26090
  16. T. Nishikubo, A. Kameyama, M. Sasano, "Synthesis of functional polymers bearing cyclic carbonate groups from (2-oxo-1,3 -dioxolan-4-yl)methyl vinyl ether" J. Polym. Sci. A: Polym. Chem., 32, 301 (1994). https://doi.org/10.1002/pola.1994.080320211
  17. X. Haung, X. Ma, J. Gao, B. Tan, K. Yang, G. Wang, Z. Deng, "Preparation, characterization, conductivity studies of novel solid polymer electrolytes based on blend of poly (AN-co-VEC) and EVA" Solid State Ionics, 215, 7 (2012). https://doi.org/10.1016/j.ssi.2012.03.009
  18. S. Kim, Y. Kim, H. Lee, D. Yoon, B. Song, "Lipasecatalyzed synthesis of glycerol carbonate from renewable glycerol and dimethyl carbonate through transes terification" J. of Molecular Catalysis B: Enzymatic, 49, 75 (2007). https://doi.org/10.1016/j.molcatb.2007.08.007
  19. S. Benyahya, M. Desroches, "Synthesis of glycerin carbonate-based intermediates using thiol-ene chemistry and isocyanate free polyhydroxyurethanes thereform" Polymer Chemistry, 2, 2661 (2011). https://doi.org/10.1039/c1py00289a

Cited by

  1. Synthesis and Physicochemical Properties of Branched Solid Polymer Electrolytes Containing Ethylene Carbonate Group vol.18, pp.4, 2015, https://doi.org/10.5229/JKES.2015.18.4.150