References
- Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2006;2:494-503; quiz 491 p following 516
- Law M, Young R, Babb J, Pollack E, Johnson G. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 2007;28:761-766
- Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9:53-60 https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2
- Kang Y, Choi SH, Kim YJ, et al. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. Radiology 2011;261:882-890 https://doi.org/10.1148/radiol.11110686
- Provenzale JM, Mukundan S, Barboriak DP. Diffusionweighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006;239:632-649 https://doi.org/10.1148/radiol.2393042031
- Murakami R, Hirai T, Sugahara T, et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology 2009;251:838-845 https://doi.org/10.1148/radiol.2513080899
- Murakami R, Hirai T, Kitajima M, et al. Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol 2008;49:462-467 https://doi.org/10.1080/02841850801918555
- Huo J, Okada K, Kim HJ, Pope WB, Goldin JG, Alger JR. CADrx for GBM brain tumors: predicting treatment response from changes in diffusion-weighted MRI. Algorithms 2009;2:1350-1367 https://doi.org/10.3390/a2041350
- Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009;252:182-189 https://doi.org/10.1148/radiol.2521081534
- Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 2001;21:43-63 https://doi.org/10.1016/S0933-3657(00)00073-7
- Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 1998;17:187-201 https://doi.org/10.1109/42.700731
- Nie J, Xue Z, Liu T, et al. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field. Comput Med Imaging Graph 2009;33:431-441 https://doi.org/10.1016/j.compmedimag.2009.04.006
- Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR images of brain tumors. Radiology 2001;218:586-591 https://doi.org/10.1148/radiology.218.2.r01fe44586
- Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A. Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 2008;27:629-640 https://doi.org/10.1109/TMI.2007.912817
- Bjornerud A. The ICE software package: direct coregistration of anatomical and functional datasets using DICOM image geometry information. Proc Hum Brain Mapping 2003;19:1018p
- Sundar H, Shen D, Biros G, Xu C, Davatzikos C. Robust computation of mutual information using spatially adaptive meshes. Med Image Comput Comput Assist Interv 2007;10:950-958
- Pluim JP, Maintz JB, Viergever MA. Mutual-informationbased registration of medical images: a survey. IEEE Trans Med Imaging 2003;22:986-1004 https://doi.org/10.1109/TMI.2003.815867
- Reed GF, Lynn F, Meade BD. Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 2002;9:1235-1239
- Jung SC, Choi SH, Yeom JA, et al. Cerebral blood volume analysis in glioblastomas using dynamic susceptibility contrast-enhanced perfusion MRI: a comparison of manual and semiautomatic segmentation methods. PLoS One 2013;8:e69323 https://doi.org/10.1371/journal.pone.0069323
- Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A. Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 2009;30:1-10 https://doi.org/10.1002/jmri.21815
- Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G. Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol 2003;10:1341-1348 https://doi.org/10.1016/S1076-6332(03)00506-3
- Hsieh TM, Liu YM, Liao CC, Xiao F, Chiang IJ, Wong JM. Automatic segmentation of meningioma from noncontrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak 2011;11:54 https://doi.org/10.1186/1472-6947-11-54
Cited by
- Dynamic Susceptibility Contrast (DSC) Perfusion MR in the Prediction of Long-Term Survival of Glioblastomas (GBM): Correlation with MGMT Promoter Methylation and 1p/19q Deletions vol.22, pp.3, 2018, https://doi.org/10.13104/imri.2018.22.3.158